skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solitary Waves Impinging on an Isolated Tropical Reef: Arrival Patterns and Wave Transformation Under Shoaling
Abstract Large nonlinear internal solitary waves (NLIWs) are known to transit west northwest across the northeastern South China Sea from generation sites around the two‐ridge system in the Luzon Strait. The waves are important because their energy flux and dissipation are several orders of magnitude larger than the surrounding ocean. The wave transit has been well studied up to about the 100 m isobath but observations in shallower water have been scarce. Using oceanographic moorings and an innovative distributed temperature sensing optical cable, the NLIW transformations were observed from 2000 to 2 m on the flanks of Dongsha Atoll (Pratas Reef). Possible outcomes included reflection, refraction around the island, wave breaking, and penetration into shallow water. Upslope penetration depended on incident wave amplitude and direction as well as the local stratification.  more » « less
Award ID(s):
1753317
PAR ID:
10408346
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Oceans
Volume:
127
Issue:
3
ISSN:
2169-9275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We examine the dependence of the penetration depth and fractional surface area (e.g., whitecap coverage) of bubble plumes generated by breaking surface waves on various wind and wave parameters over a wide range of sea state conditions in the North Pacific Ocean, including storms with sustained winds up to 22 m s−1and significant wave heights up to 10 m. Our observations include arrays of freely drifting SWIFT buoys together with shipboard systems, which enabled concurrent high‐resolution measurements of wind, waves, bubble plumes, and turbulence. We estimate bubble plume penetration depth from echograms extending to depths of more than 30 m in a surface‐following reference frame collected by downward‐looking echosounders integrated onboard the buoys. Our observations indicate that mean and maximum bubble plume penetration depths exceed 10 and 30 m beneath the surface during high winds, respectively, with plume residence times of many wave periods. They also establish strong correlations between bubble plume depths and wind speeds, spectral wave steepness, and whitecap coverage. Interestingly, we observe a robust linear correlation between plume depths, when scaled by the total significant wave height, and the inverse of wave age. However, scaled plume depths exhibit non‐monotonic variations with increasing wind speeds. Additionally, we explore the dependencies of the combined observations on various non‐dimensional predictors used for whitecap coverage estimation. This study provides the first field evidence of a direct relation between bubble plume penetration depth and whitecap coverage, suggesting that the volume of bubble plumes could be estimated by remote sensing. 
    more » « less
  2. Abstract Banded convective activity that occurred near the south coast of China on 30 January 2018 was investigated through convection‐allowing simulations using a nonhydrostatic mesoscale model. The simulations capture reasonably well the observed characteristics of this event. The convective bands are found to be closely related to an episode of mesoscale gravity waves propagating northeastward with a wave speed of around 12 m/s and a primary wavelength of about ~40–50 km. Further analyses and sensitivity experiments reveal that the environment provides a wave duct for these gravity waves, with a thick low‐level stable layer below 850 hPa capped by a low‐stability reflecting layer with a critical level. The strength and depth of the low‐level stable layer determine the intrinsic phase speed and wavelength of the ducted gravity waves. In the sensitivity tests that the stable layer depth is reduced, the wave characteristics change according to what are predicted with the wave duct theory. The convective bands collocate and propagate in phase with the peak updraft regions of the gravity waves, suggesting strong interactions of convection and gravity waves, in which the ducted gravity waves can trigger and modulate convection, while latent heating from convection enhances the waves. In essence, both wave ducting and wave‐convection interaction are jointly responsible for the banded convective activity. 
    more » « less
  3. Abstract Wave‐number‐frequency power spectrum analysis has been used as a primary tool to detect the ranges of wave numbers and frequencies about which observed convectively coupled equatorial waves are active. Previous works have suggested that activity in these waves clusters between roughly 12 and 60 m equivalent depths because spectral peaks normalized by dividing by a smoothed spectral background follow those ranges. Through a combination of wave‐number‐frequency power spectrum analysis, filtering and linear regression, this work shows that the traditional approach generates confusion because it conflates different, sometimes conflicting, signals from around the world that contribute to the same parts of the spectrum. Results also suggest that the traditional method leads us to ignore substantial power associated with variability structurally consistent with observed Kelvin waves but that occurs at lower frequencies. Wave signals at these frequencies are stronger than but similar to Kelvin wave signals coincident with the Kelvin peak in the normalized spectrum. Results suggest that the wave signal itself has red properties, possibly because more strongly convectively coupled waves propagate more slowly. The slower, more intense wave signals outside of the standard band would impact tangible weather signals and should not be ignored in operations. Instead, results support the view that disturbances labelled as Kelvin waves form a continuum with the Madden–Julian Oscillation (MJO) and suggest that the whole region of the spectrum from the broadly recognized Kelvin band to the MJO should be considered together. 
    more » « less
  4. Abstract Ground observations of VLF (very low frequency) waves have often been used to infer VLF activity in the magnetosphere; however, they are not an unbiased measure of activity at satellite altitudes due to transionospheric absorption and subionospheric attenuation. We propose several empirical models that control for these effects. VLF power spectral density (PSD) from the VLF/ELF Logger Experiment (VELOX, L=4.6, Halley, Antarctica) is used to predict DEMETER low Earth orbit VLF PSD. Validation correlations of these models are as high as 0.764; thus, ground VLF receivers spaced around the Earth could provide coverage of outer radiation belt lower band chorus over the latitudinal limits of this model (±45–75°). Correlations of four frequency bands (centered at 0.5, 1.0, 2.0, and 4.25 kHz) are compared. The simple linear correlation between ground and satellite VLF PSD in the 1.0‐kHz channel was 0.606 (at dawn). A cubic model resulted in higher correlation (0.638). VLF penetration to the ground is reduced by ionospheric absorption during solar illumination and by disruption of ducting field lines during disturbed conditions. Subionospheric attenuation also reduces VLF observations from distant field lines. Addition of these covariates improved predictions. Both solar illumination and disturbed conditions reduced ground observation of VLF PSD, with higher power waves penetrating to the ground proportionately less than lower power waves. The effect of illumination in reducing wave penetration was more pronounced at higher frequency (4.25 kHz), with the effect at a midrange frequency (2.0 kHz) falling between these two extremes. 
    more » « less
  5. Abstract Characterizing the azimuthal mode number,m, of ultralow‐frequency (ULF) waves is necessary for calculating radial diffusion of radiation belt electrons. A cross‐spectral technique is applied to the compressional Pc5 ULF waves observed by multiple pairs of GOES satellites to estimate the azimuthal mode structure during the 28‐31 May 2010 storm. We find that allowing for both positive and negativemis important to achieve a more realistic distribution of mode numbers and to resolve wave propagation direction. During the storm commencement when the solar wind dynamic pressure is high, ULF wave power is found to dominate at low‐mode numbers. An interesting change of sign inmoccurred around noon, which is consistent with the driving of ULF waves by solar wind buffeting around noon, creating antisunward wave propagation. The low‐mode ULF waves are also found to have a less global coverage in magnetic local time than previously assumed. In contrast, during the storm main phase and early recovery phase when the solar wind dynamic pressure is low and the auroral electrojet index is high, wave power is shown to be distributed over all modes from low to high. The high‐mode waves are found to cover a wider range of magnetic local time than what was previously assumed. Furthermore, to reduce the 2nπambiguity in resolvingm, a cross‐pair analysis is performed on satellite field measurements for the first time, which is demonstrated to be effective in generating more reliable mode structure of ULF waves during high auroral electrojet periods. 
    more » « less