skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-resolution He I 10 830 Å narrowband imaging for precursors of chromospheric jets and their quasi-periodic properties
Solar jets are well-collimated plasma ejections in the solar atmosphere. They are prevalent in active regions, the quiet Sun, and even coronal holes. They display a range of temperatures, yet the nature of the cool components has not been fully investigated. In this paper, we show the existence of the precursors and quasi-periodic properties for two chromospheric jets, mainly utilizing the He  I 10 830 Å narrowband filtergrams taken by the Goode Solar Telescope (GST). The extreme ultraviolet (EUV) counterparts present during the eruption correspond to a blowout jet (jet 1) and a standard jet (jet 2), as observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). The high-resolution He  I 10 830 Å observation captures a long-lasting precursor for jet 1, signified by a series of cool ejections. They are recurrent jet-like features with a quasi-period of about five minutes. On the other hand, the cool components of jet 2, recurrently accompanied by EUV emissions, present a quasi-periodic behavior with a period of about five minutes. Both the EUV brightening and He  I 10 830 Å absorption show that there was a precursor for jet 2 that occurred about five minutes before its onset. We propose that the precursor of jet 1 may be the consequence of chromospheric shock waves, since the five-minute oscillation from the photosphere can leak into the chromosphere and develop into shocks. Then, we find that the quasi-periodic behavior of the cool components of jet 2 may be related to magnetic reconnections modulated by the oscillation in the photosphere.  more » « less
Award ID(s):
1821294 2309939 2108235
PAR ID:
10408498
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Astronomy & Astrophysics
Volume:
672
ISSN:
0004-6361
Page Range / eLocation ID:
A173
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present the first joint high-resolution observations of small-scale EUV jets using Solar Orbiter (SolO)’s Extreme Ultraviolet Imager and High Resolution Imager (EUI/HRIEUV) and Hαimaging from the Visible Imaging Spectrometer installed on the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory. These jets occurred on 2022 October 29 around 19:10 UT in a quiet Sun region, and their main axis aligns with the overarching magnetic structure traced by a cluster of spicules. However, they develop a helical morphology, while the Hαspicules maintain straight, linear trajectories elsewhere. Alongside the spicules, thin, elongated red- and blueshifted Hαfeatures appear to envelope the EUV jets, which we tentatively call sheath flows. The EUI jet moving upward at a speed of ∼110 km s−1is joined by a strong Hαredshift at ∼20 km s−1to form bidirectional outflows lasting ∼2 minutes. Using AI-assisted differential emission measure analysis of SolO’s Full Sun Imager, we derived total energy of the EUV jet as ∼1.9 × 1026erg with 87% in thermal energy and 13% in kinetic energy. The parameters and morphology of this small-scale EUV jet are interpreted based on a thin flux tube model that predicts Alfvénic waves driven by impulsive interchange reconnection localized as narrowly as ∼1.6 Mm with a magnetic flux of ∼5.4 × 1017Mx, belonging to the smallest magnetic features in the quiet Sun. This detection of intricate corona–chromospheric coupling highlights the power of high-resolution imaging in unraveling the mechanisms behind small-scale solar ejections across atmospheric layers. 
    more » « less
  2. Abstract In this paper, we report the observed temporal correlation between extreme-ultraviolet (EUV) emission and magneto-acoustic oscillations in an EUV moss region, which is the footpoint region only connected by magnetic loops with million-degree plasma. The result is obtained from a detailed multi-wavelength data analysis of the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere, pass through the chromosphere and finally heat the solar transition region or the corona. The data set covers three atmospheric levels on the Sun, consisting of high-resolution broad-band imaging at TiO 7057 Å and the line of sight magnetograms for the photosphere, high-resolution narrow-band images at helium i 10830 Å for the chromosphere and EUV images at 171 Å for the corona. The 10830 Å narrow-band images and the TiO 7057 Å broad-band images are from a much earlier observation on 2012 July 22 with the 1.6 meter aperture Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO) and the EUV 171 Å images and the magnetograms are from observations made by Atmospheric Imaging Assembly (AIA) or Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report the following new phenomena: (1) Repeated injections of chromospheric material appearing as 10830 Å absorption are squirted out from inter-granular lanes with a period of ∼ 5 minutes. (2) EUV emissions are found to be periodically modulated with similar periods of ∼ 5 minutes. (3) Around the injection area where 10830 Å absorption is enhanced, both EUV emissions and strength of the magnetic field are remarkably stronger. (4) The peaks on the time profile of the EUV emissions are found to be in sync with oscillatory peaks of the stronger magnetic field in the region. These findings may give a series of strong evidences supporting the scenario that coronal heating is powered by magneto-acoustic waves. 
    more » « less
  3. We analyzed Interface-Region Imaging Spectrograph (IRIS) and Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations of a small coronal jet that occurred at the solar west limb on 29 August 2014. The jet source region, a small bright point, was located at an active-region periphery and contained a fan-spine topology with a mini-filament. Our analysis has identified key features and timings that motivated the following interpretation of this event. As the stressed core flux rises, a current sheet forms beneath it; the ensuing reconnection forms a flux rope above a flare arcade. When the rising filament-carrying flux rope reaches the stressed null, it triggers a jet via explosive interchange (breakout) reconnection. During the flux-rope interaction with the external magnetic field, we observed brightening above the filament and within the dome, along with a growing flare arcade. EUV images reveal quasi-periodic ejections throughout the jet duration with a dominant period of 4 minutes, similar to coronal jetlets and larger jets. We conclude that these observations are consistent with the magnetic breakout model for coronal jets. 
    more » « less
  4. Abstract With high-resolution narrowband He i 10830 Å filtergrams from Goode Solar Telescope, we give an extensive analysis for four granule-sized microeruptions which appear as the gentle ejection of material in He i 10830 Å band. The analysis was aided with the EUV data from Atmospheric Imaging Assembly and line-of-sight magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. The microeruptions are situated on magnetic polarity inversion lines (PILs), and their roots are accurately traced down to intergranular lanes. Their durations are different: two microeruptions are repetitive microjets, lasting ∼50 and 27 minutes respectively, while the other two events are singular, lasting ∼5 minutes. For the two microjets, they are continuous and recurrent in the He i 10830 Å band, and the recurrence is quasiperiodic with a period of ∼5 minutes. We found that only transient cospatial EUV brightenings are observed for the longer duration microjets and EUV brightenings are absent for the two singular microeruptions. What is essential to the longer duration microjets is that granules with the concentration of a positive magnetic field persistently transport the magnetic field to the PILs, canceling the opposite magnetic flux and making the base of the two microjets and the underlying granules migrate with the speed of ∼0.25 and 1.0 km s −1 . The observations support the scenario of magnetic reconnection for the quasiperiodic microjets and further show that the reconnection continuously generates multitemperature components, especially the cool component with chromospheric temperature. In addition, the ongoing reconnection is modulated by p-mode oscillations inside the Sun. 
    more » « less
  5. Abstract Solar magnetic fields are responsible for solar coronal mass ejections and other eruptive phenomena that govern space weather. Today, most of our knowledge about the solar magnetic field topologies was derived from the measurements of the magnetic field of the solar photosphere. The solar chromosphere is dilute, and associated magnetic fields are weak, which makes them difficult to measure. To address this challenging issue, we propose the use of the HeID35876 Å line, together with the HeI10830 Å line, to measure the off-limb weak and moderate chromospheric magnetic fields in the Hanle effect regime. We show that the current approach of using the polarization amplitude or degree cannot reliably retrieve the magnetic fields. We demonstrated that by using the Stokes linear polarization profiles simultaneously with the 5876 and 10830 Å lines, without the use of the circular polarization, chromospheric magnetic fields as low as and down to a few gauss can be measured easily and reliably with today’s instruments. We further demonstrate the potential to measure the weak chromospheric magnetic fields with the Stokes linear polarization profiles by using the He 5876 Å line alone, which has not been fully investigated yet. This work will provide a new technique for future daily synoptic observations for the weak magnetic fields in the solar chromosphere for both the active and quiescent regions, which are still difficult to measure. 
    more » « less