Abstract In this paper, we report the observed temporal correlation between extreme-ultraviolet (EUV) emission and magneto-acoustic oscillations in an EUV moss region, which is the footpoint region only connected by magnetic loops with million-degree plasma. The result is obtained from a detailed multi-wavelength data analysis of the region with the purpose of resolving fine-scale mass and energy flows that come from the photosphere, pass through the chromosphere and finally heat the solar transition region or the corona. The data set covers three atmospheric levels on the Sun, consisting of high-resolution broad-band imaging at TiO 7057 Å and the line of sight magnetograms for the photosphere, high-resolution narrow-band images at helium i 10830 Å for the chromosphere and EUV images at 171 Å for the corona. The 10830 Å narrow-band images and the TiO 7057 Å broad-band images are from a much earlier observation on 2012 July 22 with the 1.6 meter aperture Goode Solar Telescope (GST) at Big Bear Solar Observatory (BBSO) and the EUV 171 Å images and the magnetograms are from observations made by Atmospheric Imaging Assembly (AIA) or Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). We report the following new phenomena: (1) Repeated injections of chromospheric material appearing as 10830 Å absorption are squirted out from inter-granular lanes with a period of ∼ 5 minutes. (2) EUV emissions are found to be periodically modulated with similar periods of ∼ 5 minutes. (3) Around the injection area where 10830 Å absorption is enhanced, both EUV emissions and strength of the magnetic field are remarkably stronger. (4) The peaks on the time profile of the EUV emissions are found to be in sync with oscillatory peaks of the stronger magnetic field in the region. These findings may give a series of strong evidences supporting the scenario that coronal heating is powered by magneto-acoustic waves. 
                        more » 
                        « less   
                    
                            
                            High-resolution He I 10 830 Å narrowband imaging for precursors of chromospheric jets and their quasi-periodic properties
                        
                    
    
            Solar jets are well-collimated plasma ejections in the solar atmosphere. They are prevalent in active regions, the quiet Sun, and even coronal holes. They display a range of temperatures, yet the nature of the cool components has not been fully investigated. In this paper, we show the existence of the precursors and quasi-periodic properties for two chromospheric jets, mainly utilizing the He  I 10 830 Å narrowband filtergrams taken by the Goode Solar Telescope (GST). The extreme ultraviolet (EUV) counterparts present during the eruption correspond to a blowout jet (jet 1) and a standard jet (jet 2), as observed by the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamic Observatory (SDO). The high-resolution He  I 10 830 Å observation captures a long-lasting precursor for jet 1, signified by a series of cool ejections. They are recurrent jet-like features with a quasi-period of about five minutes. On the other hand, the cool components of jet 2, recurrently accompanied by EUV emissions, present a quasi-periodic behavior with a period of about five minutes. Both the EUV brightening and He  I 10 830 Å absorption show that there was a precursor for jet 2 that occurred about five minutes before its onset. We propose that the precursor of jet 1 may be the consequence of chromospheric shock waves, since the five-minute oscillation from the photosphere can leak into the chromosphere and develop into shocks. Then, we find that the quasi-periodic behavior of the cool components of jet 2 may be related to magnetic reconnections modulated by the oscillation in the photosphere. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10408498
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 672
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A173
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We analyzed Interface-Region Imaging Spectrograph (IRIS) and Solar Dynamics Observatory/Atmospheric Imaging Assembly (SDO/AIA) observations of a small coronal jet that occurred at the solar west limb on 29 August 2014. The jet source region, a small bright point, was located at an active-region periphery and contained a fan-spine topology with a mini-filament. Our analysis has identified key features and timings that motivated the following interpretation of this event. As the stressed core flux rises, a current sheet forms beneath it; the ensuing reconnection forms a flux rope above a flare arcade. When the rising filament-carrying flux rope reaches the stressed null, it triggers a jet via explosive interchange (breakout) reconnection. During the flux-rope interaction with the external magnetic field, we observed brightening above the filament and within the dome, along with a growing flare arcade. EUV images reveal quasi-periodic ejections throughout the jet duration with a dominant period of 4 minutes, similar to coronal jetlets and larger jets. We conclude that these observations are consistent with the magnetic breakout model for coronal jets.more » « less
- 
            Abstract With high-resolution narrowband He i 10830 Å filtergrams from Goode Solar Telescope, we give an extensive analysis for four granule-sized microeruptions which appear as the gentle ejection of material in He i 10830 Å band. The analysis was aided with the EUV data from Atmospheric Imaging Assembly and line-of-sight magnetograms from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory. The microeruptions are situated on magnetic polarity inversion lines (PILs), and their roots are accurately traced down to intergranular lanes. Their durations are different: two microeruptions are repetitive microjets, lasting ∼50 and 27 minutes respectively, while the other two events are singular, lasting ∼5 minutes. For the two microjets, they are continuous and recurrent in the He i 10830 Å band, and the recurrence is quasiperiodic with a period of ∼5 minutes. We found that only transient cospatial EUV brightenings are observed for the longer duration microjets and EUV brightenings are absent for the two singular microeruptions. What is essential to the longer duration microjets is that granules with the concentration of a positive magnetic field persistently transport the magnetic field to the PILs, canceling the opposite magnetic flux and making the base of the two microjets and the underlying granules migrate with the speed of ∼0.25 and 1.0 km s −1 . The observations support the scenario of magnetic reconnection for the quasiperiodic microjets and further show that the reconnection continuously generates multitemperature components, especially the cool component with chromospheric temperature. In addition, the ongoing reconnection is modulated by p-mode oscillations inside the Sun.more » « less
- 
            Abstract Solar jets are ubiquitous phenomena in the solar atmosphere. They are important in mass and energy transport to the upper atmosphere and interplanetary space. Here, we report a detailed analysis of a small-scale chromospheric jet with high-resolution He i 10830 Å and TiO 7057 Å images observed by the 1.6 m aperture Goode Solar Telescope at the Big Bear Solar Observatory. The observation reveals the finest dark threads inside the jet are rooted in the intergranular lanes. Their width is equal to the telescope’s diffraction limit at 10830 Å (∼100 km). The jet is recurrent and its association with the emergence and convergence of magnetic flux is observed. Together with other important features like photospheric flow toward the magnetic polarity inversion line, a bald-patch magnetic configuration, and earlier excitation of helium atoms, we propose that the jet might be initiated by magnetic reconnection in a U-shaped loop configuration. The plasmoid configuration results from the possible buoyancy of the magnetic reconnection, which reoccurs in a second step with an overlying magnetic field line. Notably, the second-step magnetic reconnection produces not only bidirectional cool or hot flows but also a new U-shaped loop configuration. The feature may be used to explain the recurrent behavior of the jet, since the new U-shaped loop can be driven to reconnect again.more » « less
- 
            Context.Solar coronal jets seen in extreme ultraviolet (EUV) are ubiquitous on the Sun, and they have been found in and at the edges of active regions, at the boundaries of coronal holes, and in the quiet Sun. Jets have various shapes, sizes, brightness, velocities, and durations in time, which complicates their detection by automated algorithms. So far, solar jets reported in the Heliophysics Event Knowledgebase (HEK) have been mostly reported by humans looking for them in the data, with different levels of precision regarding their timing and positions. Aims.We created a catalog of solar jets observed in EUV at 304 Å containing precise and consistent information on the jet timing, position, and extent. Methods.We designed a citizen science project, Solar Jet Hunter, on the Zooniverse platform, to analyze EUV observations at 304 Å from the Solar Dynamic Observatory/Atmospheric Imaging Assembly (SDO/AIA). We created movie strips for regions of the Sun in which jets have been reported in HEK and ask the volunteers to 1) confirm the presence of at least one jet in the data and 2) report the timing, position, and extent of the jet. Results.We report here the design of the project and the results obtained after the analysis of data from 2011 to 2016. We note that 365 “coronal jet” events from HEK served as input for the citizen science project, equivalent to more than 120 000 images distributed into 9689 “movie strips”. Classification by the citizen scientists resulted in 883 individual jets being identified. Conclusions.We demonstrate how citizen science can enhance the analysis of solar data with the example of Solar Jet Hunter. The catalog of jets thusly created is publicly available and will enable statistical studies of jets and related phenomena. This catalog will also be used as a training set for machines to learn to recognize jets in further datasets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    