skip to main content


Search for: All records

Award ID contains: 2108235

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We report a magnetic relaxation process inside a sunspot associated with the evolution of a transient light bridge (LB). From high-resolution imaging and spectro-polarimetric data taken by the 1.6 m Goode Solar Telescope installed at Big Bear Solar Observatory, we observe the evolutionary process of a rapidly evolving LB. The LB is formed as a result of the strong intrusion of filamentary structures with relatively horizontal fields into the vertical umbral field region. A strong current density is detected along a localized region where the magnetic field topology changes rapidly in the sunspot, especially in the boundary region between the LB and the umbra, and bright jets are observed intermittently and repeatedly in the chromosphere along this region through magnetic reconnection. In the second half of our observation, the horizontal component of the magnetic field diminishes within the LB, and the typical convection structure within the sunspot, which manifests itself as umbral dots, is restored. Our findings provide a comprehensive perspective not only on the evolution of an LB itself but also on its impacts in the neighboring regions, including the chromospheric activity and the change of magnetic energy of a sunspot.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  2. Abstract

    Three-minute oscillations are a common phenomenon in the solar chromosphere above a sunspot. Oscillations can be affected by the energy release process related to solar flares. In this paper, we report on an enhanced oscillation in flare event SOL2012-07-05T21:42 with a period of around 3 minutes that occurred at the location of a flare ribbon at a sunspot umbral–penumbral boundary and was observed in both chromospheric and coronal passbands. An analysis of this oscillation was carried out using simultaneous ground-based observations from the Goode Solar Telescope at the Big Bear Solar Observatory and space-based observations from the Solar Dynamics Observatory. A frequency shift was observed before and after the flare, with the running penumbral wave that was present with a period of about 200 s before the flare coexisting with a strengthened oscillation with a period of 180 s at the same locations after the flare. We also found a phase difference between different passbands, with the oscillation occurring from high-temperature to low-temperature passbands. Theoretically, the change in frequency was strongly dependent on the variation of the inclination of the magnetic field and the chromospheric temperature. Following an analysis of the properties of the region, we found the frequency change was caused by a slight decrease of the magnetic inclination angle with respect to the local vertical. In addition, we suggest that the enhanced 3 minute oscillation was related to the additional heating, maybe due to the downflow, during the EUV late phase of the flare.

     
    more » « less
    Free, publicly-accessible full text available January 30, 2025
  3. Abstract

    We used 29 high-resolution line-of-sight magnetograms acquired with the Goode Solar Telescope (GST) in a quiet-Sun area to extrapolate a series of potential field configurations and study their time variations. The study showed that there are regions that consistently exhibit changes in loop connectivity, whereas other vast areas do not show such changes. Analysis of the topological features of the potential fields indicates that the photospheric footprint of the separatrix between open- and closed-loop systems closely matches the roots of rapid blue- and redshifted excursions, which are disk counterparts of type II spicules. There is a tendency for the footpoints of the observed Hαfeatures to be cospatial with the footpoints of the loops that most frequently change their connectivity, while the area occupied by the open fields that did not show any significant and persistent connectivity changes is void of prominent jet and spicular activity. We also detected and tracked magnetic elements using the Southwest Automatic Magnetic Identification Suite and GST magnetograms, which allowed us to construct artificial magnetograms and calculate the corresponding potential field configurations. Analysis of the artificial data showed tendencies similar to those found for the observed data. The present study suggests that a significant amount of chromospheric activity observed in the far wings of the Hαspectral line may be generated by reconnecting closed-loop systems and canopy fields consisting of “open” field lines.

     
    more » « less
  4. Abstract

    Here, we present the study of a compact emission source during an X1.3 flare on 2022 March 30. Within a ∼41 s period (17:34:48 UT to 17:35:29 UT), Interface Region Imaging Spectrograph observations show spectral lines of Mgii, Cii, and Siivwith extremely broadened, asymmetric red wings. This source of interest (SOI) is compact, ∼1.″6, and is located in the wake of a passing ribbon. Two methods were applied to measure the Doppler velocities associated with these red wings: spectral moments and multi-Gaussian fits. The spectral-moments method considers the averaged shift of the lines, which are 85, 125, and 115 km s−1for the Mgii, Cii, and Siivlines respectively. The red-most Gaussian fit suggests a Doppler velocity up to ∼160 km s−1in all of the three lines. Downward mass motions with such high speeds are very atypical, with most chromospheric downflows in flares on the order 10–100 km s−1. Furthermore, extreme-UV (EUV) emission is strong within flaring loops connecting two flare ribbons located mainly to the east of the central flare region. The EUV loops that connect the SOI and its counterpart source in the opposite field are much less brightened, indicating that the density and/or temperature is comparatively low. These observations suggest a very fast downflowing plasma in the transition region and upper chromosphere, which decelerates rapidly since there is no equivalently strong shift of the O I chromospheric lines. This unusual observation presents a challenge that models of the solar atmosphere’s response to flares must be able to explain.

     
    more » « less
  5. Abstract

    Multiple solar instrument observation campaigns are increasingly popular among the solar physics and space science communities. Scientists organize high-resolution ground-based telescopes and spacecraft to study the evolution of the complex solar atmosphere and the origin of space weather. Image registration and coalignment between different instruments are vital for accurate data product comparison. We developed a Python language package for registration of ground-based high-resolution imaging data acquired by the Goode Solar Telescope (GST) to space-based full-disk continuum intensity data provided by the Solar Dynamics Observatory (SDO) with the scale-invariant feature transform method. The package also includes tools to align data sets obtained in different wavelengths and at different times utilizing the optical flow method. We present the image registration and coalignment workflow. The aliment accuracy of each alignment method is tested with the aid of radiative magnetohydrodynamics simulation data. We update the pointing information in GST data fits headers and generate GST and SDO imaging data products as science-ready four-dimensional (x,y,λ,t) data cubes.

     
    more » « less
  6. Abstract

    We present a detailed study of very strong magnetic fields in the NOAA Active Region (AR) 12673, which was the most flare productive AR in solar cycle 24. It produced four X-class flares including the X9.3 flare on 2017 September 6 and the X8.2 limb event on September 10. Our analysis is based on direct measurements of full Zeeman splitting of the Fei1564.85 nm line using all Stokes I, Q, U, and V profiles. This approach allowed us to obtain reliable estimates of the magnitude of magnetic fields independent of the filling factor and atmosphere models. Thus, the strongest fields up to 5.5 kG were found in a light bridge (LB) of a spot, while in the dark umbra magnetic fields did not exceed 4 kG. In the case of the LB, the magnitude of the magnetic field is not related to the underlying continuum intensity, while in the case of umbral fields we observed a well-known anticorrelation between the continuum intensity and the field magnitude. In this study, the LB was cospatial with a polarity inversion line ofδ-sunspot, and we speculate that the 5.5 kG strong horizontal fields may be associated with a compact twisted flux rope at or near the photosphere. A comparison of the depth of the Zeemanπandσcomponents showed that in the LB magnetic fields are, on average, more horizontal than those in the dark umbra.

     
    more » « less
  7. Aims.Recurring jets are observed in the solar atmosphere. They can erupt intermittently over a long period of time. By the observation of intermittent jets, we wish to understand what causes the characteristics of the periodic eruptions.

    Methods.We report intermittent jets observed by the Goode Solar Telescope (GST) with the TiO Broadband Filter Imager (BFI), the Visible Imaging Spectrometer (VIS) in Hα, and the Near-InfraRed Imaging Spectropolarimeter (NIRIS). The analysis was aided and complemented by 1400 Å and 2796 Å data from the Interface Region Imaging Spectrograph (IRIS). These observational instruments allowed us to analyze the temporal characteristics of the jet events. By constructing the Hαdopplergrams, we found that the plasma first moves upward, but during the second phase of the jet, the plasma flows back. Working with time slice diagrams, we investigated the characteristics of the jet dynamics.

    Results.The jet continued for up to 4 h. The time-distance diagram shows that the peak of the jet has clear periodic-eruption characteristics (5 min) during 18:00 UT–18:50 UT. We also found a periodic brightening phenomenon (5 min) during the jet bursts in the observed bands in the transition region (1400 Å and 2796 Å), which may be a response to intermittent jets in the upper solar atmosphere. The time lag is 3 min. Evolutionary images in the TiO band revealed a horizontal movement of the granulation at the location of the jet. By comparison to the quiet region of the Sun, we found that the footpoint of the jet is enhanced at the center of the Hαspectral line profile, without significant changes in the line wings. This suggests prolonged heating at the footpoint of the jet. In the mixed-polarity magnetic field region of the jet, we observed the emergence of magnetic flux, its cancellation, and shear, indicating possible intermittent magnetic reconnection. This is confirmed by the nonlinear force-free field model, which was reconstructed using the magneto-friction method.

    Conclusions.The multiwavelength analysis indicates that the events we studied were triggered by magnetic reconnection that was caused by mixed-polarity magnetic fields. We suggest that the horizontal motion of the granulation in the photosphere drives the magnetic reconnection, which is modulated byp-mode oscillations.

     
    more » « less
    Free, publicly-accessible full text available February 1, 2025
  8. The coronal magnetic field over NOAA Active Region 11,429 during a X5.4 solar flare on 7 March 2012 is modeled using optimization based Non-Linear Force-Free Field extrapolation. Specifically, 3D magnetic fields were modeled for 11 timesteps using the 12-min cadence Solar Dynamics Observatory (SDO) Helioseismic and Magnetic Imager photospheric vector magnetic field data, spanning a time period of 1 hour before through 1 hour after the start of the flare. Using the modeled coronal magnetic field data, seven different magnetic field parameters were calculated for 3 separate regions: areas with surface | B z |≥ 300 G, areas of flare brightening seen in SDO Atmospheric Imaging Assembly imagery, and areas with surface | B | ≥ 1000 G and high twist. Time series of the magnetic field parameters were analyzed to investigate the evolution of the coronal field during the solar flare event and discern pre-eruptive signatures. The data shows that areas with | B | ≥ 1000 G and | T w |≥ 1.5 align well with areas of initial flare brightening during the pre-flare phase and at the beginning of the eruptive phase of the flare, suggesting that measurements of the photospheric magnetic field strength and twist can be used to predict the flare location within an active region if triggered. Additionally, the evolution of seven investigated magnetic field parameters indicated a destabilizing magnetic field structure that could likely erupt. 
    more » « less
  9. Context. Solar observations of carbon monoxide (CO) indicate the existence of lower-temperature gas in the lower solar chromosphere. We present an observation of pores, and quiet-Sun, and network magnetic field regions with CO 4.66 μm lines by the Cryogenic Infrared Spectrograph (CYRA) at Big Bear Solar Observatory. Aims. We used the strong CO lines at around 4.66 μm to understand the properties of the thermal structures of lower solar atmosphere in different solar features with various magnetic field strengths. Methods. Different observations with different instruments were included: CO 4.66 μm imaging spectroscopy by CYRA, Atmospheric Imaging Assembly (AIA) 1700 Å images, Helioseismic and Magnetic Imager (HMI) continuum images, line-of-sight (LOS) magnetograms, and vector magnetograms. The data from 3D radiation magnetohydrodynamic (MHD) simulation with the Bifrost code are also employed for the first time to be compared with the observation. We used the Rybicki-Hummer (RH) code to synthesize the CO line profiles in the network regions. Results. The CO 3-2 R14 line center intensity changes to be either enhanced or diminished with increasing magnetic field strength, which should be caused by different heating effects in magnetic flux tubes with different sizes. We find several “cold bubbles” in the CO 3-2 R14 line center intensity images, which can be classified into two types. One type is located in the quiet-Sun regions without magnetic fields. The other type, which has rarely been reported in the past, is near or surrounded by magnetic fields. Notably, some are located at the edge of the magnetic network. The two kinds of cold bubbles and the relationship between cold bubble intensities and network magnetic field strength are both reproduced by the 3D MHD simulation with the Bifrost and RH codes. The simulation also shows that there is a cold plasma blob near the network magnetic fields, causing the observed cold bubbles seen in the CO 3-2 R14 line center image. Conclusions. Our observation and simulation illustrate that the magnetic field plays a vital role in the generation of some CO cold bubbles. 
    more » « less
  10. Abstract Diagnosing the spatiotemporal pattern of magnetic flux on the Sun is vital for understanding the origin of solar magnetism and activity. Here, we report a new form of flux appearance, magnetic outbreak, using observations with an extremely high spatial resolution of 0.″16 from the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory. Magnetic outbreak refers to an early growth of unipolar magnetic flux and its later explosion into fragments, in association with plasma upflow and exploding granulations; each individual fragment has flux of 10 16 –10 17 Mx, moving apart with a velocity of 0.5–2.2 km s −1 . The magnetic outbreak takes place in the hecto-Gauss region of pore moats. In this study, we identify six events of magnetic outbreak during 6 hr observations over an approximately 40″ × 40″ field of view. The newly discovered magnetic outbreak might be the first evidence of the long-anticipated convective blowup. 
    more » « less