skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SpaBERT: A Pretrained Language Model from Geographic Data for Geo-Entity Representation
Named geographic entities (geo-entities for short) are the building blocks of many geographic datasets. Characterizing geo-entities is integral to various application domains, such as geo-intelligence and map comprehension, while a key challenge is to capture the spatial-varying context of an entity. We hypothesize that we shall know the characteristics of a geo-entity by its surrounding entities, similar to knowing word meanings by their linguistic context. Accordingly, we propose a novel spatial language model, SpaBERT, which provides a general-purpose geo-entity representation based on neighboring entities in geospatial data. SpaBERT extends BERT to capture linearized spatial context, while incorporating a spatial coordinate embedding mechanism to preserve spatial relations of entities in the 2-dimensional space. SpaBERT is pretrained with masked language modeling and masked entity prediction tasks to learn spatial dependencies. We apply SpaBERT to two downstream tasks: geo-entity typing and geo-entity linking. Compared with the existing language models that do not use spatial context, SpaBERT shows significant performance improvement on both tasks. We also analyze the entity representation from SpaBERT in various settings and the effect of spatial coordinate embedding.  more » « less
Award ID(s):
2105329
PAR ID:
10408536
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Findings of the Association for Computational Linguistics: EMNLP 2022
Page Range / eLocation ID:
2757 to 2769
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Humans subconsciously engage in geospatial reasoning when reading articles. We recognize place names and their spatial relations in text and mentally associate them with their physical locations on Earth. Although pretrained language models can mimic this cognitive process using linguistic context, they do not utilize valuable geospatial information in large, widely available geographical databases, e.g., OpenStreetMap. This paper introduces GeoLM, a geospatially grounded language model that enhances the understanding of geo-entities in natural language. GeoLM leverages geo-entity mentions as anchors to connect linguistic information in text corpora with geospatial information extracted from geographical databases. GeoLM connects the two types of context through contrastive learning and masked language modeling. It also incorporates a spatial coordinate embedding mechanism to encode distance and direction relations to capture geospatial context. In the experiment, we demonstrate that GeoLM exhibits promising capabilities in supporting toponym recognition, toponym linking, relation extraction, and geo-entity typing, which bridge the gap between natural language processing and geospatial sciences. The code is publicly available at https://github.com/knowledge-computing/geolm. 
    more » « less
  2. Abstract Qualitative spatial/temporal reasoning (QSR/QTR) plays a key role in research on human cognition, e.g., as it relates to navigation, as well as in work on robotics and artificial intelligence. Although previous work has mainly focused on various spatial and temporal calculi, more recently representation learning techniques such as embedding have been applied to reasoning and inference tasks such as query answering and knowledge base completion. These subsymbolic and learnable representations are well suited for handling noise and efficiency problems that plagued prior work. However, applying embedding techniques to spatial and temporal reasoning has received little attention to date. In this paper, we explore two research questions: (1) How do embedding-based methods perform empirically compared to traditional reasoning methods on QSR/QTR problems? (2) If the embedding-based methods are better, what causes this superiority? In order to answer these questions, we first propose a hyperbolic embedding model, called HyperQuaternionE, to capture varying properties of relations (such as symmetry and anti-symmetry), to learn inversion relations and relation compositions (i.e., composition tables), and to model hierarchical structures over entities induced by transitive relations. We conduct various experiments on two synthetic datasets to demonstrate the advantages of our proposed embedding-based method against existing embedding models as well as traditional reasoners with respect to entity inference and relation inference. Additionally, our qualitative analysis reveals that our method is able to learn conceptual neighborhoods implicitly. We conclude that the success of our method is attributed to its ability to model composition tables and learn conceptual neighbors, which are among the core building blocks of QSR/QTR. 
    more » « less
  3. null (Ed.)
    External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks in a similar fashion to pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks. 
    more » « less
  4. Entities and events are crucial to natural language reasoning and common in procedural texts. Existing work has focused either exclusively on entity state tracking (e.g., whether a pan is hot) or on event reasoning (e.g., whether one would burn themselves by touching the pan), while these two tasks are often causally related. We propose CREPE, the first benchmark on causal reasoning of event plausibility and entity states. We show that most language models, including GPT-3, perform close to chance at .35 F1, lagging far behind human at .87 F1. We boost model performance to .59 F1 by creatively representing events as programming languages while prompting language models pretrained on code. By injecting the causal relations between entities and events as intermediate reasoning steps in our representation, we further boost the performance to .67 F1. Our findings indicate not only the challenge that CREPE brings for language models, but also the efficacy of code-like prompting combined with chain-of-thought prompting for multihop event reasoning. 
    more » « less
  5. This work deals with the challenge of learning and reasoning over language and vision data for the related downstream tasks such as visual question answering (VQA) and natural language for visual reasoning (NLVR). We design a novel cross-modality relevance module that is used in an end-to-end framework to learn the relevance representation between components of various input modalities under the supervision of a target task, which is more generalizable to unobserved data compared to merely reshaping the original representation space. In addition to modeling the relevance between the textual entities and visual entities, we model the higher-order relevance between entity relations in the text and object relations in the image. Our proposed approach shows competitive performance on two different language and vision tasks using public benchmarks and improves the state-of-the-art published results. The learned alignments of input spaces and their relevance representations by NLVR task boost the training efficiency of VQA task. 
    more » « less