Abstract A vigorous shallow earthquake sequence along the southern coast of Puerto Rico commenced on 28 December 2019 in a region with little prior large seismicity. The largest event in the sequence (MW = 6.4), struck on 7 January 2020 and involved normal faulting. It produced extensive damage in southern Puerto Rico and power disruption across the island. Nearby strong ground motions and static offsets from GPS stations along with teleseismic recordings are inverted for the kinematic rupture process of the mainshock. The ~15‐km‐long rupture is spatially concentrated, with most slip between 3 and 13 km deep and peak slip of ~1.6 m. The static stress drop is high, ~19 MPa, with the rupture locating in the eastern section of a ~30‐km‐long band of seismicity bisected by a near‐orthogonal lineation. Complex faulting and high stress in the intraplate region appears to be responsible for the high earthquake productivity.
more »
« less
Characterization of Swarm and Mainshock–Aftershock Behavior in Puerto Rico
Abstract The recent Indios, Puerto Rico earthquake sequence has drawn attention, as the increased seismicity rate in this area was unprecedented. The sequence began on 28 December 2019, caused a 6.4 magnitude earthquake on 7 January 2020, and remained active over a year later. This sequence fits the nominal definition of an earthquake swarm in that it had an abrupt onset, a sustained high rate of seismicity without a clear triggering mainshock or evidence for Omori decay, and a lack of adherence to Bath’s law. However, the sequence also had several prominent mainshock–aftershock (MS–AS) sequences embedded within it. We applied three-station waveform cross correlation to the early part of this sequence using the Puerto Rico Seismic Network (PRSN) catalog as templates, which confirmed the mixture of swarm and MS–AS patterns. In an effort to place this intriguing sequence in the context of the previous seismicity in Puerto Rico, we investigated the existence of swarms and MS–AS sequences recorded by the PRSN since 1987 by identifying sequences with increased seismicity rate when compared to the background rate. About 59 sequences were manually verified and characterized into swarms or MS–AS. We found that 58% of the sequences follow traditional swarm patterns and 14% adhere to traditional MS–AS behavior, whereas 29% of the sequences have a mixture of both swarm and MS–AS behaviors. These findings suggest that it is not unusual for the Indios sequence to have a mixture of both the characteristics. In addition, the detection of many swarms distributed over a broad area of the subduction interface indicates stress heterogeneity and low-coupling consistent with prior studies indicating that the potential for a magnitude ∼8 megathrust earthquake along the Puerto Rico trench is unlikely.
more »
« less
- Award ID(s):
- 2025073
- PAR ID:
- 10408556
- Date Published:
- Journal Name:
- Seismological Research Letters
- Volume:
- 93
- Issue:
- 2A
- ISSN:
- 0895-0695
- Page Range / eLocation ID:
- 641 to 652
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY Earthquakes come in clusters formed of mostly aftershock sequences, swarms and occasional foreshock sequences. This clustering is thought to result either from stress transfer among faults, a process referred to as cascading, or from transient loading by aseismic slip (pre-slip, afterslip or slow slip events). The ETAS statistical model is often used to quantify the fraction of clustering due to stress transfer and to assess the eventual need for aseismic slip to explain foreshocks or swarms. Another popular model of clustering relies on the earthquake nucleation model derived from experimental rate-and-state friction. According to this model, earthquakes cluster because they are time-advanced by the stress change imparted by the mainshock. This model ignores stress interactions among aftershocks and cannot explain foreshocks or swarms in the absence of transient loading. Here, we analyse foreshock, swarm and aftershock sequences resulting from cascades in a Discrete Fault Network model governed by rate-and-state friction. We show that the model produces realistic swarms, foreshocks and aftershocks. The Omori law, characterizing the temporal decay of aftershocks, emerges in all simulations independently of the assumed initial condition. In our simulations, the Omori law results from the earthquake nucleation process due to rate and state friction and from the heterogeneous stress changes due to the coseismic stress transfers. By contrast, the inverse Omori law, which characterizes the accelerating rate of foreshocks, emerges only in the simulations with a dense enough fault system. A high-density complex fault zone favours fault interactions and the emergence of an accelerating sequence of foreshocks. Seismicity catalogues generated with our discrete fault network model can generally be fitted with the ETAS model but with some material differences. In the discrete fault network simulations, fault interactions are weaker in aftershock sequences because they occur in a broader zone of lower fault density and because of the depletion of critically stressed faults. The productivity of the cascading process is, therefore, significantly higher in foreshocks than in aftershocks if fault zone complexity is high. This effect is not captured by the ETAS model of fault interactions. It follows that a foreshock acceleration stronger than expected from ETAS statistics does not necessarily require aseismic slip preceding the mainshock (pre-slip). It can be a manifestation of a cascading process enhanced by the topological properties of the fault network. Similarly, earthquake swarms might not always imply transient loading by aseismic slip, as they can emerge from stress interactions.more » « less
-
ABSTRACT The Puerto Rico–Virgin Islands (PRVI) block lies within the Northern Caribbean Plate Boundary Zone—a zone accommodating stresses between the larger North America and Caribbean plates. Data from Global Positioning System (GPS) sites throughout the PRVI block have been used to confirm the existence of a distinct microblock in the southwest. It is no coincidence that this portion of the PRVI block is the epicentral region of the 7 January 2020 Mw 6.4 earthquake and the ensuing seismic sequence. Prior to the mainshock, the southwestern Puerto Rico (SWPR) region exhibited most of the onland seismic activity. The 2020–2021 SWPR earthquake seismic sequence has been characterized by having an atypical aftershock decay distribution occurring along multiple faults. As a result, fault parameters of the 7 January 2020 mainshock have been poorly defined by conventional seismic methods. Here, we present results from campaign and continuous GPS sites in SWPR, and compare GPS-derived displacements to those computed from the U.S. Geological Survey National Earthquake Information Center (NEIC) focal mechanism. We conclude that irrespective of which nodal plane is used, the observed coseismic displacements from GPS differ from those predicted using a simple elastic model and the NEIC focal mechanism. We infer based on these observations that the complex mainshock rupture resulted in a suboptimal double-couple solution.more » « less
-
Abstract Recognizing earthquakes as foreshocks in real time would provide a valuable forecasting capability. In a recent study, Gulia and Wiemer (2019) proposed a traffic-light system that relies on abrupt changes in b-values relative to background values. The approach utilizes high-resolution earthquake catalogs to monitor localized regions around the largest events and distinguish foreshock sequences (reduced b-values) from aftershock sequences (increased b-values). The recent well-recorded earthquake foreshock sequences in Ridgecrest, California, and Maria Antonia, Puerto Rico, provide an opportunity to test the procedure. For Ridgecrest, our b-value time series indicates an elevated risk of a larger impending earthquake during the Mw 6.4 foreshock sequence and provides an ambiguous identification of the onset of the Mw 7.1 aftershock sequence. However, the exact result depends strongly on expert judgment. Monte Carlo sampling across a range of reasonable decisions most often results in ambiguous warning levels. In the case of the Puerto Rico sequence, we record significant drops in b-value prior to and following the largest event (Mw 6.4) in the sequence. The b-value has still not returned to background levels (12 February 2020). The Ridgecrest sequence roughly conforms to expectations; the Puerto Rico sequence will only do so if a larger event occurs in the future with an ensuing b-value increase. Any real-time implementation of this approach will require dense instrumentation, consistent (versioned) low completeness catalogs, well-calibrated maps of regionalized background b-values, systematic real-time catalog production, and robust decision making about the event source volumes to analyze.more » « less
-
Abstract Fault-zone fluids control effective normal stress and fault strength. While most earthquake models assume a fixed pore fluid pressure distribution, geologists have documented fault valving behavior, that is, cyclic changes in pressure and unsteady fluid migration along faults. Here we quantify fault valving through 2-D antiplane shear simulations of earthquake sequences on a strike-slip fault with rate-and-state friction, upward Darcy flow along a permeable fault zone, and permeability evolution. Fluid overpressure develops during the interseismic period, when healing/sealing reduces fault permeability, and is released after earthquakes enhance permeability. Coupling between fluid flow, permeability and pressure evolution, and slip produces fluid-driven aseismic slip near the base of the seismogenic zone and earthquake swarms within the seismogenic zone, as ascending fluids pressurize and weaken the fault. This model might explain observations of late interseismic fault unlocking, slow slip and creep transients, swarm seismicity, and rapid pressure/stress transmission in induced seismicity sequences.more » « less
An official website of the United States government

