skip to main content


Title: Characterization of Swarm and Mainshock–Aftershock Behavior in Puerto Rico
Abstract The recent Indios, Puerto Rico earthquake sequence has drawn attention, as the increased seismicity rate in this area was unprecedented. The sequence began on 28 December 2019, caused a 6.4 magnitude earthquake on 7 January 2020, and remained active over a year later. This sequence fits the nominal definition of an earthquake swarm in that it had an abrupt onset, a sustained high rate of seismicity without a clear triggering mainshock or evidence for Omori decay, and a lack of adherence to Bath’s law. However, the sequence also had several prominent mainshock–aftershock (MS–AS) sequences embedded within it. We applied three-station waveform cross correlation to the early part of this sequence using the Puerto Rico Seismic Network (PRSN) catalog as templates, which confirmed the mixture of swarm and MS–AS patterns. In an effort to place this intriguing sequence in the context of the previous seismicity in Puerto Rico, we investigated the existence of swarms and MS–AS sequences recorded by the PRSN since 1987 by identifying sequences with increased seismicity rate when compared to the background rate. About 59 sequences were manually verified and characterized into swarms or MS–AS. We found that 58% of the sequences follow traditional swarm patterns and 14% adhere to traditional MS–AS behavior, whereas 29% of the sequences have a mixture of both swarm and MS–AS behaviors. These findings suggest that it is not unusual for the Indios sequence to have a mixture of both the characteristics. In addition, the detection of many swarms distributed over a broad area of the subduction interface indicates stress heterogeneity and low-coupling consistent with prior studies indicating that the potential for a magnitude ∼8 megathrust earthquake along the Puerto Rico trench is unlikely.  more » « less
Award ID(s):
2025073
NSF-PAR ID:
10408556
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Seismological Research Letters
Volume:
93
Issue:
2A
ISSN:
0895-0695
Page Range / eLocation ID:
641 to 652
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    Earthquakes come in clusters formed of mostly aftershock sequences, swarms and occasional foreshock sequences. This clustering is thought to result either from stress transfer among faults, a process referred to as cascading, or from transient loading by aseismic slip (pre-slip, afterslip or slow slip events). The ETAS statistical model is often used to quantify the fraction of clustering due to stress transfer and to assess the eventual need for aseismic slip to explain foreshocks or swarms. Another popular model of clustering relies on the earthquake nucleation model derived from experimental rate-and-state friction. According to this model, earthquakes cluster because they are time-advanced by the stress change imparted by the mainshock. This model ignores stress interactions among aftershocks and cannot explain foreshocks or swarms in the absence of transient loading. Here, we analyse foreshock, swarm and aftershock sequences resulting from cascades in a Discrete Fault Network model governed by rate-and-state friction. We show that the model produces realistic swarms, foreshocks and aftershocks. The Omori law, characterizing the temporal decay of aftershocks, emerges in all simulations independently of the assumed initial condition. In our simulations, the Omori law results from the earthquake nucleation process due to rate and state friction and from the heterogeneous stress changes due to the coseismic stress transfers. By contrast, the inverse Omori law, which characterizes the accelerating rate of foreshocks, emerges only in the simulations with a dense enough fault system. A high-density complex fault zone favours fault interactions and the emergence of an accelerating sequence of foreshocks. Seismicity catalogues generated with our discrete fault network model can generally be fitted with the ETAS model but with some material differences. In the discrete fault network simulations, fault interactions are weaker in aftershock sequences because they occur in a broader zone of lower fault density and because of the depletion of critically stressed faults. The productivity of the cascading process is, therefore, significantly higher in foreshocks than in aftershocks if fault zone complexity is high. This effect is not captured by the ETAS model of fault interactions. It follows that a foreshock acceleration stronger than expected from ETAS statistics does not necessarily require aseismic slip preceding the mainshock (pre-slip). It can be a manifestation of a cascading process enhanced by the topological properties of the fault network. Similarly, earthquake swarms might not always imply transient loading by aseismic slip, as they can emerge from stress interactions.

     
    more » « less
  2. SUMMARY

    The spatio-temporal properties of seismicity give us incisive insight into the stress state evolution and fault structures of the crust. Empirical models based on self-exciting point processes continue to provide an important tool for analysing seismicity, given the epistemic uncertainty associated with physical models. In particular, the epidemic-type aftershock sequence (ETAS) model acts as a reference model for studying seismicity catalogues. The traditional ETAS model uses simple parametric definitions for the background rate of triggering-independent seismicity. This reduces the effectiveness of the basic ETAS model in modelling the temporally complex seismicity patterns seen in seismic swarms that are dominated by aseismic tectonic processes such as fluid injection rather than aftershock triggering. In order to robustly capture time-varying seismicity rates, we introduce a deep Gaussian process (GP) formulation for the background rate as an extension to ETAS. GPs are a robust non-parametric model for function spaces with covariance structure. By conditioning the length-scale structure of a GP with another GP, we have a deep-GP: a probabilistic, hierarchical model that automatically tunes its structure to match data constraints. We show how the deep-GP-ETAS model can be efficiently sampled by making use of a Metropolis-within-Gibbs scheme, taking advantage of the branching process formulation of ETAS and a stochastic partial differential equation (SPDE) approximation for Matérn GPs. We illustrate our method using synthetic examples, and show that the deep-GP-ETAS model successfully captures multiscale temporal behaviour in the background forcing rate of seismicity. We then apply the results to two real-data catalogues: the Ridgecrest, CA 2019 July 5 Mw 7.1 event catalogue, showing that deep-GP-ETAS can successfully characterize a classical aftershock sequence; and the 2016–2019 Cahuilla, CA earthquake swarm, which shows two distinct phases of aseismic forcing concordant with a fluid injection-driven initial sequence, arrest of the fluid along a physical barrier and release following the largest Mw 4.4 event of the sequence.

     
    more » « less
  3. Abstract

    Three prolific earthquake swarms and numerous smaller ones have occurred since 1980 in the Mesozoic igneous plutonic rocks of the Perris block of the Peninsular Ranges, Southern California. The major swarms occurred in 1980–1981, 1983–1984, and 2016–2018, with the latest swarm still ongoing. These swarms have no clear mainshock, with the largest events ofML3.6,ML3.7, andMw4.4. Each successive swarm had larger cumulative seismic moment release with about 314 and 411 events ofM ≥ 1.5, while the third swarm has produced about 451 events ofM ≥ 1.5 (as of September 2018). The concurrent strike‐slip faulting occurred on north to northwest striking planes but with no orthogonal northeast trending seismicity alignments. These shallow swarms are probably driven by intrablock Pacific‐North America plate boundary stress loading of the two bounding major late Quaternary strike‐slip faults, the Elsinore and San Jacinto faults. The state of stress within the Cahuilla Valley pluton has a ~40° angle between the maximum principal stress and the average trend of the swarms, suggesting that migrating pore fluid pressures aid in the formation and growth of zones of weakness. These swarms, which last more than 600 days each, exhibit clear bilateral spatial migration for distances of up to ~7–8 km and reach their full length in about 20 months. The slow spatial‐temporal development of the swarms corresponds to a fluid diffusivity of 0.006 to 0.01 m2/s, consistent with very low permeability rocks as expected for this block. There is no geodetic or other evidence for a slow slip event driving the swarms.

     
    more » « less
  4. Abstract

    A vigorous shallow earthquake sequence along the southern coast of Puerto Rico commenced on 28 December 2019 in a region with little prior large seismicity. The largest event in the sequence (MW = 6.4), struck on 7 January 2020 and involved normal faulting. It produced extensive damage in southern Puerto Rico and power disruption across the island. Nearby strong ground motions and static offsets from GPS stations along with teleseismic recordings are inverted for the kinematic rupture process of the mainshock. The ~15‐km‐long rupture is spatially concentrated, with most slip between 3 and 13 km deep and peak slip of ~1.6 m. The static stress drop is high, ~19 MPa, with the rupture locating in the eastern section of a ~30‐km‐long band of seismicity bisected by a near‐orthogonal lineation. Complex faulting and high stress in the intraplate region appears to be responsible for the high earthquake productivity.

     
    more » « less
  5. Abstract

    The magnitude‐frequency distribution (MFD) describes the relative proportion of earthquake magnitudes and provides vital information for seismic hazard assessment. Theb‐value, derived from the MFD, is commonly used to estimate the probability that a future earthquake will exceed a specified magnitude threshold. Improved MFD andb‐value estimates are of great importance in the central and eastern United States where high volumes of fluid injection have contributed to a significant rise in seismicity over the last decade. In this study, we recalculate the magnitudes of 8,775 events for the 2011 Prague, Oklahoma sequence using a relative magnitude approach that depends only on waveform data to calculate magnitudes. We also compare the distribution of successive magnitude differences to the MFD and show that a combination of the magnitude difference distribution (MDFD) and relative magnitudes yields a reliable estimate ofb‐value. Using the MDFD and relative magnitudes, we examine the temporal and spatial variations in theb‐value and show thatb‐value ranges between ∼0.6 and 0.85 during the aftershock sequence for at least 5 months after theM5.7 mainshock, though areas surrounding the northeast part of the sequence experience higherb‐values (0.7–0.85) than the southwestern part of the Meeker‐Prague fault whereb‐value is the lowest (0.6–0.7). We also identify a cluster of off‐fault events with the highestb‐values in the catalog (0.85). These new estimates of MFD andb‐value will contribute to understanding of the relations between induced and tectonic earthquake sequences and promote discussion regarding the use ofb‐value in induced seismic hazard estimation.

     
    more » « less