skip to main content


Title: Assembly and manipulation of responsive and flexible colloidal structures by magnetic and capillary interactions
The long-ranged interactions induced by magnetic fields and capillary forces in multiphasic fluid–particle systems facilitate the assembly of a rich variety of colloidal structures and materials. We review here the diverse structures assembled from isotropic and anisotropic particles by independently or jointly using magnetic and capillary interactions. The use of magnetic fields is one of the most efficient means of assembling and manipulating paramagnetic particles. By tuning the field strength and configuration or by changing the particle characteristics, the magnetic interactions, dynamics, and responsiveness of the assemblies can be precisely controlled. Concurrently, the capillary forces originating at the fluid–fluid interfaces can serve as means of reconfigurable binding in soft matter systems, such as Pickering emulsions, novel responsive capillary gels, and composites for 3D printing. We further discuss how magnetic forces can be used as an auxiliary parameter along with the capillary forces to assemble particles at fluid interfaces or in the bulk. Finally, we present examples how these interactions can be used jointly in magnetically responsive foams, gels, and pastes for 3D printing. The multiphasic particle gels for 3D printing open new opportunities for making of magnetically reconfigurable and “active” structures.  more » « less
Award ID(s):
1935248 2133983 1825476
NSF-PAR ID:
10408558
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Soft Matter
Volume:
19
Issue:
14
ISSN:
1744-683X
Page Range / eLocation ID:
2466 to 2485
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Properties of particulate-filled polymer matrix composites are highly dependent on the spatial position, orientation and assembly of the particles throughout the matrix. External fields such as electric and magnetic have been individually used to orient, position and assemble micro and nanoparticles in polymer solutions and their resulting material properties were investigated, but the combined effect of using more than one external field on the material properties has not been studied in detail. Applying different configurations of electric and magnetic fields on geometrically and magnetically anisotropic particulates can produce varying microarchitectures with a range of material properties. Experimentally and with simulations, we systematically probe the effect of combined electric and magnetic fields on the microstructure formation of geometrically and magnetically anisotropic barium hexaferrite (BHF) in polydimethylsiloxane (PDMS). The magnetic and dielectric properties resulting from different microstructures are characterized and microstructure-property relationships are analyzed. Our results demonstrate that a variety of microarchitectures can be produced using multi-field processing depending on the nature of the applied external field. For example, the application of an electric field creates macro-chains where the orientation of the BHF stacks inside the macro-chains is random. On the other hand, application of a magnetic field rotates the BHF stacks within the macro-chain in the direction dictated by the magnetic field. In simulations, the dielectrophoretic, magnetic, and viscous forces and torques acting on the particles show that particle anisotropies are central to the ability to control orientation along the orthogonal magnetic and geometric axes, mirroring experimental results. The authors refer to the ability to manipulate particle orientation along orthogonal axes as ‘orthogonal control’. Using this technique, not only are a variety of microstructures possible, but also a range of dielectric and magnetic properties can result. For example, for 1 vol% BHF-PDMS composites, the experimental dielectric permittivity is found to vary from 2.84 to 5.12 and the squareness ratio (remnant magnetization over saturation magnetization) is found to vary from 0.55 to 0.92 (from 0.52 to 0.99 in simulations) depending on the applied external stimuli. The ability to predict and produce a variety of microstructures with a range of properties from a single material set will be particularly beneficial for resin pool based additive manufacturing and 3D printing.

     
    more » « less
  2. Abstract

    Soft intelligent structures that are programmed to reshape and reconfigure under magnetic field can find applications such as in soft robotics and biomedical devices. Here, a new class of smart elastomeric architectures that undergo complex reconfiguration and shape change in applied magnetic fields, while floating on the surface of water, is reported. These magnetoactive soft actuators are fabricated by 3D printing with homocomposite silicone capillary ink. The ultrasoft actuators easily deform by the magnetic force exerted on carbonyl iron particles embedded in the silicone, as well as lateral capillary forces. The tensile and compressive moduli of the actuators are easily determined by their topological design through 3D printing. As a result, their responses can be engineered by the interplay of the intensity of the magnetic field gradient and the programmable moduli. 3D printing allows us to fabricate soft architectures with different actuation modes, such as isotropic/anisotropic contraction and multiple shape changes, as well as functional reconfiguration. Meshes that reconfigure in magnetic fields and respond to external stimuli by reshaping could serve as active tissue scaffolds for cell cultures and soft robots mimicking creatures that live on the surface of water.

     
    more » « less
  3. Abstract

    Additive manufacturing, no longer reserved exclusively for prototyping components, can create parts with complex geometries and locally tailored properties. For example, multiple homogenous material sources can be used in different regions of a print or be mixed during printing to define properties locally. Additionally, heterogeneous composites provide an opportunity for another level of tuning properties through processing. For example, within particulate-filled polymer matrix composites before curing, the presence of an applied electric and/or magnetic fields can reorient filler particles and form hierarchical structures depending on the fields applied. Control of particle organization is important because effective material properties are highly dependent on the distribution of filler material within composites once cured. While previous work in homogenization and effective medium theories have determined properties based upon ideal analytic distributions of particle orientations and spatial location, this work expands upon these methods generating discrete distributions from quasi-Monte Carlo simulations of the electromagnetic processing event. Results of simulations provide predicted microarchitectures from which effective properties are determined via computational homogenization.

    These particle dynamics simulations account for dielectric and magnetic forces and torques in addition to hydrodynamic forces and hard particle separation. As such, the distributions generated are processing field dependent. The effective properties for a composite represented by this distribution are determined via computational homogenization using finite element analysis (FEA). This provides a path from constituents, through processing parameters to effective material properties. In this work, we use these simulations in conjunction with a multi-objective optimization scheme to resolve the relationships between processing conditions and effective properties, to inform field-assisted additive manufacturing processes.

    The constituent set providing the largest range of properties can be found using optimization techniques applied to the aforementioned simulation framework. This key information provides a recipe for tailoring properties for additive manufacturing design and production. For example, our simulation results show that stiffness for a 10% filler volume fraction can increase by 34% when aligned by an electric field as compared to a randomly distributed composite. The stiffness of this aligned sample is also 29% higher in the direction of the alignment than perpendicular to it, which only differs by 5% from the random case [1]. Understanding this behavior and accurately predicting composite properties is key to producing field processed composites and prints. Material property predictions compare favorably to effective medium theory and experimentation with trends in elastic and magnetic effective properties demonstrating the same anisotropic behavior as a result of applied field processing. This work will address the high computational expense of physics simulation based objective functions by using efficient algorithms and data structures. We will present an optimization framework using nested gradient searches for micro barium hexaferrite particles in a PDMS matrix, optimizing on composite magnetization to determine the volume fraction of filler that will provide the largest range of properties by varying the applied electric and magnetic fields.

     
    more » « less
  4. null (Ed.)
    Additive manufacturing (or "three-dimensional (3D) printing") technologies offer unique means to expand the architectural versatility with which microfluidic systems can be designed and constructed. In particular, "direct laser writing (DLW)" supports submicron-scale 3D printing via two-photon (or multi-photon) polymerization; however, such high resolutions are poorly suited for fabricating the macro-to-micro interfaces (i.e., fluidic access ports) critical to microfluidic applications. To bypass this issue, here we present a novel strategy for using DLW to 3D print architecturally complex microfluidic structures directly onto-and notably, fully integrated with-macroscale fused silica tubes. Fabrication and experimental results for this "ex situ DLW (esDLW)" approach revealed effective structure-to-tube sealing, with fluidic integrity maintained during fluid transport from macroscale tubing, into and through demonstrative 3D printed microfluidic structures, and then out of designed outlets. These results suggest that the presented DLW-based printing approach for externally coupling microfluidic structures to macroscale fluidic systems holds promise for emerging applications spanning chemical, biomedical, and soft robotics fields. 
    more » « less
  5. Assembling different shaped particles into ordered microstructures is an open challenge in creating multifunctional particle-based materials and devices. Here, we report the two-dimensional (2D) AC electric field mediated assembly of different shaped colloidal particles into amorphous, liquid crystalline, and crystalline microstructures. Particle shapes investigated include disks, ellipses, squares, and rectangles, which show how systematic variations in anisotropy and corner curvature determine the number and type of resulting microstructures. AC electric fields induce dipolar interactions to control particle positional and orientational order. Microstructural states are determined via particle tracking to compute order parameters, which agree with computer simulations and show how particle packing and dipolar interactions together produce each structure. Results demonstrate how choice of particle shape and field conditions enable kinetically viable routes to assemble nematic, tetratic, and smectic liquid crystal structures as well as crystals with stretched 4- and 6-fold symmetry. Results show it is possible to assemble all corresponding hard particle phases, but also show how dipolar interactions influence and produce additional microstructures. Our findings provide design rules for the assembly of diverse microstructures of different shaped particles in AC electric fields, which could enable scalable and reconfigurable particle-based materials, displays, and printing technologies. 
    more » « less