skip to main content

Search for: All records

Award ID contains: 1825476

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    It is challenging to find a conventional nanofabrication technique that can consistently produce soft polymeric matter of high surface area and nanoscale morphology in a way that is scalable, versatile, and easily tunable. Here, the capabilities of a universal method for fabricating diverse nano‐ and micro‐scale morphologies based on polymer precipitation templated by the fluid streamlines in multiphasic flow are explored. It is shown that while the procedure is operationally simple, various combinations of its intertwined mechanisms can controllably and reproducibly lead to the formation of an extraordinary wide range of colloidal morphologies. By systematically investigating the process conditions, 12 distinct classes of polymer micro‐ and nano‐structures including particles, rods, ribbons, nanosheets, and soft dendritic colloids (dendricolloids) are identified. The outcomes are interpreted by delineating the physical processes into three stages: hydrodynamic shear, capillary and mechanical breakup, and polymer precipitation rate. The insights into the underlying fundamental mechanisms provide guidance toward developing a versatile and scalable nanofabrication platform. It is verified that the liquid shear‐based technique is versatile and works well with many chemically diverse polymers and biopolymers, showing potential as a universal tool for simple and scalable nanofabrication of many morphologically distinct soft matter classes.

    more » « less
  2. Abstract

    The design of hydrogels where multiple interpenetrating networks enable enhanced mechanical properties can broaden their field of application in biomedical materials, 3D printing, and soft robotics. We report a class of self-reinforced homocomposite hydrogels (HHGs) comprised of interpenetrating networks of multiscale hierarchy. A molecular alginate gel is reinforced by a colloidal network of hierarchically branched alginate soft dendritic colloids (SDCs). The reinforcement of the molecular gel with the nanofibrillar SDC network of the same biopolymer results in a remarkable increase of the HHG’s mechanical properties. The viscoelastic HHGs show >3× larger storage modulus and >4× larger Young’s modulus than either constitutive network at the same concentration. Such synergistically enforced colloidal-molecular HHGs open up numerous opportunities for formulation of biocompatible gels with robust structure-property relationships. Balance of the ratio of their precursors facilitates precise control of the yield stress and rate of self-reinforcement, enabling efficient extrusion 3D printing of HHGs.

    more » « less
  3. Abstract

    A highly controllable and scalable process for fabrication of large amounts of concentrated lignin nanoparticles (LNPs) is reported. These lignin core nanoparticles are formed through flash nanoprecipitation, however, scaling up of the fabrication process requires fundamental understanding of their operational formation mechanism and surface properties. It is shown how a semicontinuous synthesis system with a recirculation loop makes it possible to produce flash precipitated lignin nanoparticles in large amounts for practical applications. The roles of the process parameters, including flow rates and lignin concentration, are investigated and analyzed. The results indicate that the LNPs are formed by a process of continuous burst nucleation at the point of mixing without diffusive growth, which yields nanoparticles of highly uniform size following a modified LaMer nucleation and growth mechanism. This mechanism makes possible facile process control and scale‐up. Effective control of the resulting nanoparticle size is achieved through the initial concentration of lignin in the injected solution. The impressive capability to produce suspensions of any predesigned multimodal distribution is demonstrated. The resulting nanofabrication technique can produce large volumes of concentrated LNP suspensions of high stability and tightly controlled size distributions for biological or agricultural applications.

    more » « less
  4. The long-ranged interactions induced by magnetic fields and capillary forces in multiphasic fluid–particle systems facilitate the assembly of a rich variety of colloidal structures and materials. We review here the diverse structures assembled from isotropic and anisotropic particles by independently or jointly using magnetic and capillary interactions. The use of magnetic fields is one of the most efficient means of assembling and manipulating paramagnetic particles. By tuning the field strength and configuration or by changing the particle characteristics, the magnetic interactions, dynamics, and responsiveness of the assemblies can be precisely controlled. Concurrently, the capillary forces originating at the fluid–fluid interfaces can serve as means of reconfigurable binding in soft matter systems, such as Pickering emulsions, novel responsive capillary gels, and composites for 3D printing. We further discuss how magnetic forces can be used as an auxiliary parameter along with the capillary forces to assemble particles at fluid interfaces or in the bulk. Finally, we present examples how these interactions can be used jointly in magnetically responsive foams, gels, and pastes for 3D printing. The multiphasic particle gels for 3D printing open new opportunities for making of magnetically reconfigurable and “active” structures. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    Lignin is the second most abundant biopolymer on Earth after cellulose. Since lignin breaks down in the environment naturally, lignin nanoparticles may serve as biodegradable carriers of biocidal actives with minimal environmental footprint compared to conventional antimicrobial formulations. Here, a lignin nanoparticle (LNP) coated with chitosan was engineered. Previous studies show both lignin and chitosan to exhibit antimicrobial properties. Another study showed that adding a chitosan coating can improve the adsorption of LNPs to biological samples by electrostatic adherence to oppositely charged surfaces. Our objective was to determine if these engineered particles would elicit toxicological responses, utilizing embryonic zebrafish toxicity assays. Zebrafish were exposed to nanoparticles with an intact chorionic membrane and with the chorion enzymatically removed to allow for direct contact of particles with the developing embryo. Both mortality and sublethal endpoints were analyzed. Mortality rates were significantly greater for chitosan-coated LNPs (Ch-LNPs) compared to plain LNPs and control groups. Significant sublethal endpoints were observed in groups exposed to Ch-LNPs with chorionic membranes intact. Our study indicated that engineered Ch-LNP formulations at high concentrations were more toxic than plain LNPs. Further study is warranted to fully understand the mechanisms of Ch-LNP toxicity. 
    more » « less