skip to main content


This content will become publicly available on January 1, 2024

Title: Entanglement structures in quantum field theories: Negativity cores and bound entanglement in the vacuum
Award ID(s):
2111046
NSF-PAR ID:
10408588
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physical Review A
Volume:
107
Issue:
1
ISSN:
2469-9926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the entanglement contour and partial entanglement entropy (PEE) in quantum field theories in 3 and higher dimensions. The entanglement entropy is evaluated from a certain limit of the PEE with a geometric regulator. In the context of the entanglement contour, we classify the geometric regulators, study their difference from the UV regulators. Furthermore, for spherical regions in conformal field theories (CFTs) we find the exact relation between the UV and geometric cutoff, which clarifies some subtle points in the previous literature. We clarify a subtle point of the additive linear combination (ALC) proposal for PEE in higher dimensions. The subset entanglement entropies in the ALC proposal should all be evaluated as a limit of the PEE while excluding a fixed class of local-short-distance correlation. Unlike the 2-dimensional configurations, naively plugging the entanglement entropy calculated with a UV cutoff will spoil the validity of the ALC proposal. We derive the entanglement contour function for spherical regions, annuli and spherical shells in the vacuum state of general-dimensional CFTs on a hyperplane. 
    more » « less
  2. null (Ed.)