skip to main content


Title: Music and Brain Circuitry: Strategies for Strengthening Evidence-Based Research for Music-Based Interventions
The neuroscience of music and music-based interventions (MBIs) is a fascinating but challenging research field. While music is a ubiquitous component of every human society, MBIs may encompass listening to music, performing music, music-based movement, undergoing music education and training, or receiving treatment from music therapists. Unraveling the brain circuits activated and influenced by MBIs may help us gain better understanding of the therapeutic and educational values of MBIs by gathering strong research evidence. However, the complexity and variety of MBIs impose unique research challenges. This article reviews the recent endeavor led by the National Institutes of Health to support evidence-based research of MBIs and their impact on health and diseases. It also highlights fundamental challenges and strategies of MBI research with emphases on the utilization of animal models, human brain imaging and stimulation technologies, behavior and motion capturing tools, and computational approaches. It concludes with suggestions of basic requirements when studying MBIs and promising future directions to further strengthen evidence-based research on MBIs in connections with brain circuitry. SIGNIFICANCE STATEMENT Music and music-based interventions (MBI) engage a wide range of brain circuits and hold promising therapeutic potentials for a variety of health conditions. Comparative studies using animal models have helped in uncovering brain circuit activities involved in rhythm perception, while human imaging, brain stimulation, and motion capture technologies have enabled neural circuit analysis underlying the effects of MBIs on motor, affective/reward, and cognitive function. Combining computational analysis, such as prediction method, with mechanistic studies in animal models and humans may unravel the complexity of MBIs and their effects on health and disease.  more » « less
Award ID(s):
1945436
NSF-PAR ID:
10408593
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
The Journal of Neuroscience
Volume:
42
Issue:
45
ISSN:
0270-6474
Page Range / eLocation ID:
8498 to 8507
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Astrocytes are actively involved in a neuroprotective role in the brain, which includes scavenging reactive oxygen species to minimize tissue damage. They also modulate neuroinflammation and reactive gliosis prevalent in several brain disorders like epilepsy, Alzheimer's, and Parkinson's disease. In animal models, targeted manipulation of astrocytic function via modulation of their calcium (Ca2+) oscillations by incorporating light‐sensitive cation channels like Channelrhodopsin‐2 (ChR2) offers a promising avenue in influencing the long‐term progression of these disorders. However, using adult animals for Ca2+imaging poses major challenges, including accelerated deterioration ofin situslice health and age‐ related changes. Additionally, optogenetic preparations necessitate usage of a red‐shifted Ca2+indicator like Rhod‐2 AM to avoid overlapping light issues between ChR2 and the Ca2+indicator during simultaneous optogenetic stimulation and imaging. In this article, we provide an experimental setting that uses live adult murine brain slices (2‐5 months) from a knock‐in model expressing Channelrhodopsin‐2 (ChR2(C128S)) in cortical astrocytes, loaded with Rhod‐2 AM to elicit robust Ca2+response to light stimulation. We have developed and standardized a protocol for brain extraction, sectioning, Rhod‐2 AM loading, maintenance of slice health, and Ca2+imaging during light stimulation. This has been successfully applied to optogenetically control adult cortical astrocytes, which exhibit synchronous patterns of Ca2+activity upon light stimulation, drastically different from resting spontaneous activity. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Experimental preparation, setup, slice preparation and Rhod‐2 AM staining

    Basic Protocol 2: Image acquisition and analysis

     
    more » « less
  2. Abstract Why do humans make music? Theories of the evolution of musicality have focused mainly on the value of music for specific adaptive contexts such as mate selection, parental care, coalition signaling, and group cohesion. Synthesizing and extending previous proposals, we argue that social bonding is an overarching function that unifies all of these theories, and that musicality enabled social bonding at larger scales than grooming and other bonding mechanisms available in ancestral primate societies. We combine cross-disciplinary evidence from archeology, anthropology, biology, musicology, psychology, and neuroscience into a unified framework that accounts for the biological and cultural evolution of music. We argue that the evolution of musicality involves gene–culture coevolution, through which proto-musical behaviors that initially arose and spread as cultural inventions had feedback effects on biological evolution because of their impact on social bonding. We emphasize the deep links between production, perception, prediction, and social reward arising from repetition, synchronization, and harmonization of rhythms and pitches, and summarize empirical evidence for these links at the levels of brain networks, physiological mechanisms, and behaviors across cultures and across species. Finally, we address potential criticisms and make testable predictions for future research, including neurobiological bases of musicality and relationships between human music, language, animal song, and other domains. The music and social bonding hypothesis provides the most comprehensive theory to date of the biological and cultural evolution of music. 
    more » « less
  3. INTRODUCTION A brainwide, synaptic-resolution connectivity map—a connectome—is essential for understanding how the brain generates behavior. However because of technological constraints imaging entire brains with electron microscopy (EM) and reconstructing circuits from such datasets has been challenging. To date, complete connectomes have been mapped for only three organisms, each with several hundred brain neurons: the nematode C. elegans , the larva of the sea squirt Ciona intestinalis , and of the marine annelid Platynereis dumerilii . Synapse-resolution circuit diagrams of larger brains, such as insects, fish, and mammals, have been approached by considering select subregions in isolation. However, neural computations span spatially dispersed but interconnected brain regions, and understanding any one computation requires the complete brain connectome with all its inputs and outputs. RATIONALE We therefore generated a connectome of an entire brain of a small insect, the larva of the fruit fly, Drosophila melanogaster. This animal displays a rich behavioral repertoire, including learning, value computation, and action selection, and shares homologous brain structures with adult Drosophila and larger insects. Powerful genetic tools are available for selective manipulation or recording of individual neuron types. In this tractable model system, hypotheses about the functional roles of specific neurons and circuit motifs revealed by the connectome can therefore be readily tested. RESULTS The complete synaptic-resolution connectome of the Drosophila larval brain comprises 3016 neurons and 548,000 synapses. We performed a detailed analysis of the brain circuit architecture, including connection and neuron types, network hubs, and circuit motifs. Most of the brain’s in-out hubs (73%) were postsynaptic to the learning center or presynaptic to the dopaminergic neurons that drive learning. We used graph spectral embedding to hierarchically cluster neurons based on synaptic connectivity into 93 neuron types, which were internally consistent based on other features, such as morphology and function. We developed an algorithm to track brainwide signal propagation across polysynaptic pathways and analyzed feedforward (from sensory to output) and feedback pathways, multisensory integration, and cross-hemisphere interactions. We found extensive multisensory integration throughout the brain and multiple interconnected pathways of varying depths from sensory neurons to output neurons forming a distributed processing network. The brain had a highly recurrent architecture, with 41% of neurons receiving long-range recurrent input. However, recurrence was not evenly distributed and was especially high in areas implicated in learning and action selection. Dopaminergic neurons that drive learning are amongst the most recurrent neurons in the brain. Many contralateral neurons, which projected across brain hemispheres, were in-out hubs and synapsed onto each other, facilitating extensive interhemispheric communication. We also analyzed interactions between the brain and nerve cord. We found that descending neurons targeted a small fraction of premotor elements that could play important roles in switching between locomotor states. A subset of descending neurons targeted low-order post-sensory interneurons likely modulating sensory processing. CONCLUSION The complete brain connectome of the Drosophila larva will be a lasting reference study, providing a basis for a multitude of theoretical and experimental studies of brain function. The approach and computational tools generated in this study will facilitate the analysis of future connectomes. Although the details of brain organization differ across the animal kingdom, many circuit architectures are conserved. As more brain connectomes of other organisms are mapped in the future, comparisons between them will reveal both common and therefore potentially optimal circuit architectures, as well as the idiosyncratic ones that underlie behavioral differences between organisms. Some of the architectural features observed in the Drosophila larval brain, including multilayer shortcuts and prominent nested recurrent loops, are found in state-of-the-art artificial neural networks, where they can compensate for a lack of network depth and support arbitrary, task-dependent computations. Such features could therefore increase the brain’s computational capacity, overcoming physiological constraints on the number of neurons. Future analysis of similarities and differences between brains and artificial neural networks may help in understanding brain computational principles and perhaps inspire new machine learning architectures. The connectome of the Drosophila larval brain. The morphologies of all brain neurons, reconstructed from a synapse-resolution EM volume, and the synaptic connectivity matrix of an entire brain. This connectivity information was used to hierarchically cluster all brains into 93 cell types, which were internally consistent based on morphology and known function. 
    more » « less
  4. New Findings

    What is the topic of this review?

    The vagus nerve is a crucial regulator of cardiovascular homeostasis, and its activity is linked to heart health. Vagal activity originates from two brainstem nuclei: the nucleus ambiguus (fast lane) and the dorsal motor nucleus of the vagus (slow lane), nicknamed for the time scales that they require to transmit signals.

    What advances does it highlight?

    Computational models are powerful tools for organizing multi‐scale, multimodal data on the fast and slow lanes in a physiologically meaningful way. A strategy is laid out for how these models can guide experiments aimed at harnessing the cardiovascular health benefits of differential activation of the fast and slow lanes.

    Abstract

    The vagus nerve is a key mediator of brain–heart signaling, and its activity is necessary for cardiovascular health. Vagal outflow stems from the nucleus ambiguus, responsible primarily for fast, beat‐to‐beat regulation of heart rate and rhythm, and the dorsal motor nucleus of the vagus, responsible primarily for slow regulation of ventricular contractility. Due to the high‐dimensional and multimodal nature of the anatomical, molecular and physiological data on neural regulation of cardiac function, data‐derived mechanistic insights have proven elusive. Elucidating insights has been complicated further by the broad distribution of the data across heart, brain and peripheral nervous system circuits. Here we lay out an integrative framework based on computational modelling for combining these disparate and multi‐scale data on the two vagal control lanes of the cardiovascular system. Newly available molecular‐scale data, particularly single‐cell transcriptomic analyses, have augmented our understanding of the heterogeneous neuronal states underlying vagally mediated fast and slow regulation of cardiac physiology. Cellular‐scale computational models built from these data sets represent building blocks that can be combined using anatomical and neural circuit connectivity, neuronal electrophysiology, and organ/organismal‐scale physiology data to create multi‐system, multi‐scale models that enablein silicoexploration of the fast versus slow lane vagal stimulation. The insights from the computational modelling and analyses will guide new experimental questions on the mechanisms regulating the fast and slow lanes of the cardiac vagus toward exploiting targeted vagal neuromodulatory activity to promote cardiovascular health.

     
    more » « less
  5. Abstract

    Listening to pleasurable music is known to engage the brain’s reward system. This has motivated many cognitive-behavioral interventions for healthy aging, but little is known about the effects of music-based intervention (MBI) on activity and connectivity of the brain’s auditory and reward systems. Here we show preliminary evidence that brain network connectivity can change after receptive MBI in cognitively unimpaired older adults. Using a combination of whole-brain regression, seed-based connectivity analysis, and representational similarity analysis (RSA), we examined fMRI responses during music listening in older adults before and after an 8-week personalized MBI. Participants rated self-selected and researcher-selected musical excerpts on liking and familiarity. Parametric effects of liking, familiarity, and selection showed simultaneous activation in auditory, reward, and default mode network (DMN) areas. Functional connectivity within and between auditory and reward networks was modulated by participant liking and familiarity ratings. RSA showed significant representations of selection and novelty at both time-points, and an increase in striatal representation of musical stimuli following intervention. An exploratory seed-based connectivity analysis comparing pre- and post-intervention showed significant increase in functional connectivity between auditory regions and medial prefrontal cortex (mPFC). Taken together, results show how regular music listening can provide an auditory channel towards the mPFC, thus offering a potential neural mechanism for MBI supporting healthy aging.

     
    more » « less