Functional near infrared spectroscopy (fNIR) is a noninvasive, portable optical imaging tool to monitor changes in hemodynamic responses (i.e., oxygenated hemoglobin (HbO)) within the prefrontal cortex (PFC) in response to sensory, motor or cognitive activation. We used fNIR for monitoring PFC activation during learning of simulated laparoscopic surgical tasks throughout 4 days of training and testing. Blocked (BLK) and random (RND) practice orders were used to test the practice schedule effect on behavioral, hemodynamic responses and relative neural efficiency (EFFrel-neural) measures during transfer. Left and right PFC for both tasks showed significant differences with RND using less HbO than BLK. Cognitive workload showed RND exhibiting high EFFrel-neural across the PFC for the coordination task while the more difficult cholecystectomy task showed EFFrel-neural differences only in the left PFC. Use of brain activation, behavioral and EFFrel-neural measures can provide a more accurate depiction of the generalization or transfer of learning.
more »
« less
A multimodal dataset for investigating working memory in presence of music: a pilot study
IntroductionDecoding an individual's hidden brain states in responses to musical stimuli under various cognitive loads can unleash the potential of developing a non-invasive closed-loop brain-machine interface (CLBMI). To perform a pilot study and investigate the brain response in the context of CLBMI, we collect multimodal physiological signals and behavioral data within the working memory experiment in the presence of personalized musical stimuli. MethodsParticipants perform a working memory experiment called then-back task in the presence of calming music and exciting music. Utilizing the skin conductance signal and behavioral data, we decode the brain's cognitive arousal and performance states, respectively. We determine the association of oxygenated hemoglobin (HbO) data with performance state. Furthermore, we evaluate the total hemoglobin (HbT) signal energy over each music session. ResultsA relatively low arousal variation was observed with respect to task difficulty, while the arousal baseline changes considerably with respect to the type of music. Overall, the performance index is enhanced within the exciting session. The highest positive correlation between the HbO concentration and performance was observed within the higher cognitive loads (3-back task) for all of the participants. Also, the HbT signal energy peak occurs within the exciting session. DiscussionFindings may underline the potential of using music as an intervention to regulate the brain cognitive states. Additionally, the experiment provides a diverse array of data encompassing multiple physiological signals that can be used in the brain state decoder paradigm to shed light on the human-in-the-loop experiments and understand the network-level mechanisms of auditory stimulation.
more »
« less
- PAR ID:
- 10584621
- Publisher / Repository:
- Frontiers in Neuroscience
- Date Published:
- Journal Name:
- Frontiers in Neuroscience
- Volume:
- 18
- ISSN:
- 1662-453X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Listening to pleasurable music is known to engage the brain’s reward system. This has motivated many cognitive-behavioral interventions for healthy aging, but little is known about the effects of music-based intervention (MBI) on activity and connectivity of the brain’s auditory and reward systems. Here we show preliminary evidence that brain network connectivity can change after receptive MBI in cognitively unimpaired older adults. Using a combination of whole-brain regression, seed-based connectivity analysis, and representational similarity analysis (RSA), we examined fMRI responses during music listening in older adults before and after an 8-week personalized MBI. Participants rated self-selected and researcher-selected musical excerpts on liking and familiarity. Parametric effects of liking, familiarity, and selection showed simultaneous activation in auditory, reward, and default mode network (DMN) areas. Functional connectivity within and between auditory and reward networks was modulated by participant liking and familiarity ratings. RSA showed significant representations of selection and novelty at both time-points, and an increase in striatal representation of musical stimuli following intervention. An exploratory seed-based connectivity analysis comparing pre- and post-intervention showed significant increase in functional connectivity between auditory regions and medial prefrontal cortex (mPFC). Taken together, results show how regular music listening can provide an auditory channel towards the mPFC, thus offering a potential neural mechanism for MBI supporting healthy aging.more » « less
-
Patterns of estimated neural activity derived from resting state functional magnetic resonance imaging (rs-fMRI) have been shown to predict a wide range of cognitive and behavioral outcomes in both normative and clinical populations. Yet, without links to established cognitive processes, the functional brain states associated with the resting brain will remain unexplained, and potentially confounded, markers of individual differences. In this work we demonstrate the application of multivoxel pattern classifiers (MVPCs) to predict the valence and arousal properties of spontaneous affect processing in the task-non-engaged resting state. rs-fMRI data were acquired from subjects that were held out from a subject set that underwent image-based affect induction concurrent with fMRI to train the MVPCs. We also validated these affective predictions against a well-established, independent measure of autonomic arousal, skin conductance response. These findings suggest a new neuroimaging methodology for resting state analysis in which models, trained on cognition-specific task-based fMRI acquired from well-matched cohorts, capably predict hidden cognitive processes operating within the resting brain.more » « less
-
Abstract Background music is widely used to sustain attention, but little is known about what musical properties aid attention. This may be due to inter-individual variability in neural responses to music. Here we find that music with amplitude modulations added at specific rates can sustain attention differentially for those with varying levels of attentional difficulty. We first tested the hypothesis that music with strong amplitude modulation would improve sustained attention, and found it did so when it occurred early in the experiment. Rapid modulations in music elicited greater activity in attentional networks in fMRI, as well as greater stimulus-brain coupling in EEG. Finally, to test the idea that specific modulation properties would differentially affect listeners based on their level of attentional difficulty, we parametrically manipulated the depth and rate of amplitude modulations inserted in otherwise-identical music, and found that beta-range modulations helped more than other modulation ranges for participants with more ADHD symptoms. Results suggest the possibility of an oscillation-based neural mechanism for targeted music to support improved cognitive performance.more » « less
-
Abstract Early home musical environments can significantly impact sensory, cognitive, and socioemotional development. While longitudinal studies may be resource-intensive, retrospective reports are a relatively quick and inexpensive way to examine associations between early home musical environments and adult outcomes. We present the Music@Home–Retrospective scale, derived partly from the Music@Home–Preschool scale (Politimou et al., 2018), to retrospectively assess the childhood home musical environment. In two studies (totaln = 578), we conducted an exploratory factor analysis (Study 1) and confirmatory factor analysis (Study 2) on items, including many adapted from the Music@Home–Preschool scale. This revealed a 20-item solution with five subscales. Items retained for three subscales (Caregiver Beliefs, Caregiver Initiation of Singing, Child Engagement with Music) load identically to three in the Music@Home-–Preschool Scale. We also identified two additional dimensions of the childhood home musical environment. The Attitude Toward Childhood Home Musical Environment subscale captures participants’ current adult attitudes toward their childhood home musical environment, and the Social Listening Contexts subscale indexes the degree to which participants listened to music at home with others (i.e., friends, siblings, and caregivers). Music@Home–Retrospective scores were related to adult self-reports of musicality, performance on a melodic perception task, and self-reports of well-being, demonstrating utility in measuring the early home music environment as captured through this scale. The Music@Home–Retrospective scale is freely available to enable future investigations exploring how the early home musical environment relates to adult cognition, affect, and behavior.more » « less
An official website of the United States government

