Background/Objectives: This study explores an optimization-based strategy for muscle force estimation by employing simplified cost functions integrated with physiologically relevant muscle models. Methods: Considering elbow flexion as a case study, we employ an inverse-dynamics approach to estimate muscle forces for the biceps brachii, brachialis, and brachioradialis, utilizing different combinations of cost functions and muscle constitutive models. Muscle force generation is modeled by accounting for active and passive contractile behavior to varying degrees using Hill-type models. In total, three separate cost functions (minimization of total muscle force, mechanical work, and muscle stress) are evaluated with each muscle force model to represent potential neuromuscular control strategies without relying on electromyography (EMG) data, thereby characterizing the interplay between muscle models and cost functions. Results: Among the evaluated models, the Hill-type muscle model that incorporates both active and passive properties, combined with the stress minimization cost function, provided the most accurate predictions of muscle activation and force production for all three arm flexor muscles. Our results, validated against existing biomechanical data, demonstrate that even simplified cost functions, when paired with detailed muscle models, can achieve high accuracy in predicting muscle forces. Conclusions: This approach offers a versatile, EMG-free alternative for estimating muscle recruitment and force production, providing a more accessible and adaptable tool for muscle force analysis. It has profound implications for enhancing rehabilitation protocols and athletic training, not only broadening the applicability of muscle force estimation in clinical and sports settings but also paving the way for future innovations in biomechanical research.
more »
« less
Evolution of a chordate-specific mechanism for myoblast fusion
Muscle fusogens in tunicates and lampreys shed new light on the evolution and developmental mechanism of muscle multinucleation.
more »
« less
- PAR ID:
- 10408609
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 8
- Issue:
- 35
- ISSN:
- 2375-2548
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Background: Skeletal muscle in the trunk derives from the somites, paired segments of paraxial mesoderm. Whereas axial musculature develops within the somite, appendicular muscle develops following migration of muscle precursors into lateral plate mesoderm. The development of muscles bridging axial and appendicular systems appears mixed. Results: We examine development of three migratory muscle precursor-derived muscles in zebrafish: the sternohyoideus (SH), pectoral fin (PF), and posterior hypaxial (PHM) muscles. We show there is an anterior to posterior gradient to the developmental gene expression and maturation of these three muscles. SH muscle precursors exhibit a long delay between migration and differentiation, PF muscle precursors exhibit a moderate delay in differentiation, and PHM muscle precursors show virtually no delay between migration and differentiation. Using lineage tracing, we show that lateral plate contribution to the PHM muscle is minor, unlike its known extensive contribution to the PF muscle and absence in the ventral extension of axial musculature. Conclusions: We propose that PHM development is intermediate between a migratory muscle mode and an axial muscle mode of development, wherein the PHM differentiates after a very short migration of its precursors and becomes more anterior primarily by elongation of differentiated muscle fibers.more » « less
-
ABSTRACT Recent studies have demonstrated that muscle force is not determined solely by activation under dynamic conditions, and that length history has an important role in determining dynamic muscle force. Yet, the mechanisms for how muscle force is produced under dynamic conditions remain unclear. To explore this, we investigated the effects of muscle stiffness, activation and length perturbations on muscle force. First, submaximal isometric contraction was established for whole soleus muscles. Next, the muscles were actively shortened at three velocities. During active shortening, we measured muscle stiffness at optimal muscle length (L0) and the force response to time-varying activation and length perturbations. We found that muscle stiffness increased with activation but decreased as shortening velocity increased. The slope of the relationship between maximum force and activation amplitude differed significantly among shortening velocities. Also, the intercept and slope of the relationship between length perturbation amplitude and maximum force decreased with shortening velocity. As shortening velocities were related to muscle stiffness, the results suggest that length history determines muscle stiffness and the history-dependent muscle stiffness influences the contribution of activation and length perturbations to muscle force. A two-parameter viscoelastic model including a linear spring and a linear damper in parallel with measured stiffness predicted history-dependent muscle force with high accuracy. The results and simulations support the hypothesis that muscle force under dynamic conditions can be accurately predicted as the force response of a history-dependent viscoelastic material to length perturbations.more » « less
-
Abstract Estimating muscle forces is crucial for understanding joint dynamics and improving rehabilitation strategies, particularly for patients with neurological disorders who suffer from impaired muscle function. Muscle forces are directly proportional to muscle activations, which can be obtained using electromyography (EMG). EMG-driven modeling estimates muscle forces and joint moments from muscle activations. While surface muscles' activations can be obtained using surface electrodes, deep muscles require invasive methods and are not readily available for real-time applications. This study aims to extend our previously developed method for a single unmeasured muscle to a comprehensive approach for the simultaneous prediction of multiple unmeasured muscle activations in the upper extremity using muscle synergy extrapolation and EMG-driven modeling. By employing non-negative matrix factorization to decompose known EMG data into synergy components, the activations of unmeasured muscles are reconstructed with high accuracy by minimizing differences between joint moments obtained by EMG-driven modeling and inverse dynamics. This methodology is validated through experimentally collected muscle activations, demonstrating over 90% correlation with EMG signals in various scenarios.more » « less
-
Selection for increased muscle mass in domestic turkeys has resulted in muscles twice the size of those found in wild turkeys. This study characterizes muscle structural changes as well as functional differences in muscle performance associated with selection for increased muscle mass. We compared peak isometric force production, whole muscle and individual fiber cross-sectional area (CSA), connective tissue collagen concentration and structure of the lateral gastrocnemius (LG) muscle in wild and adult domestic turkeys. We also explored changes with age between juvenile and adult domestic turkeys. We found that the domestic turkey’s LG muscle can produce the same force per cross-sectional area as a wild turkey; however, due to scaling, domestic adults produce less force per unit body mass. Domestic turkey muscle fibers were slightly smaller in CSA (3802 ± 2223 μm2) than those of the wild turkey (4014 ± 1831 μm2, p = 0.013), indicating that the absolutely larger domestic turkey muscles are a result of an increased number of smaller fibers. Collagen concentration in domestic turkey muscle (4.19 ± 1.58 μg hydroxyproline/mg muscle) was significantly lower than in the wild turkeys (6.23 ± 0.63 μg/mg, p = 0.0275), with visible differences in endomysium texture, observed via scanning electron microscopy. Selection for increased muscle mass has altered the structure of the LG muscle; however, scaling likely contributes more to hind limb functional differences observed in the domestic turkey.more » « less
An official website of the United States government

