Abstract Plasmids are autonomous genetic elements that can be exchanged between microorganisms via horizontal gene transfer (HGT). Despite the central role they play in antibiotic resistance and modern biotechnology, our understanding of plasmids’ natural ecology is limited. Recent experiments have shown that plasmids can spread even when they are a burden to the cell, suggesting that natural plasmids may exist as parasites. Here, we use mathematical modeling to explore the ecology of such parasitic plasmids. We first develop models of single plasmids and find that a plasmid’s population dynamics and optimal infection strategy are strongly determined by the plasmid’s HGT mechanism. We then analyze models of co-infecting plasmids and show that parasitic plasmids are prone to a “tragedy of the commons” in which runaway plasmid invasion severely reduces host fitness. We propose that this tragedy of the commons is averted by selection between competing populations and demonstrate this effect in a metapopulation model. We derive predicted distributions of unique plasmid types in genomes—comparison to the distribution of plasmids in a collection of 17,725 genomes supports a model of parasitic plasmids with positive plasmid–plasmid interactions that ameliorate plasmid fitness costs or promote the invasion of new plasmids. 
                        more » 
                        « less   
                    
                            
                            Tradeoff between lag time and growth rate drives the plasmid acquisition cost
                        
                    
    
            Abstract Conjugative plasmids drive genetic diversity and evolution in microbial populations. Despite their prevalence, plasmids can impose long-term fitness costs on their hosts, altering population structure, growth dynamics, and evolutionary outcomes. In addition to long-term fitness costs, acquiring a new plasmid introduces an immediate, short-term perturbation to the cell. However, due to the transient nature of this plasmid acquisition cost, a quantitative understanding of its physiological manifestations, overall magnitudes, and population-level implications, remains unclear. To address this, here we track growth of single colonies immediately following plasmid acquisition. We find that plasmid acquisition costs are primarily driven by changes in lag time, rather than growth rate, for nearly 60 conditions covering diverse plasmids, selection environments, and clinical strains/species. Surprisingly, for a costly plasmid, clones exhibiting longer lag times also achieve faster recovery growth rates, suggesting an evolutionary tradeoff. Modeling and experiments demonstrate that this tradeoff leads to counterintuitive ecological dynamics, whereby intermediate-cost plasmids outcompete both their low and high-cost counterparts. These results suggest that, unlike fitness costs, plasmid acquisition dynamics are not uniformly driven by minimizing growth disadvantages. Moreover, a lag/growth tradeoff has clear implications in predicting the ecological outcomes and intervention strategies of bacteria undergoing conjugation. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2040697
- PAR ID:
- 10408708
- Publisher / Repository:
- Nature Publishing Group
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 14
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Interactions between natural selection and population dynamics are central to both evolutionary‐ecology and biological responses to anthropogenic change. Natural selection is often thought to incur a demographic cost that, at least temporarily, reduces population growth. However, hard and soft selection clarify that the influence of natural selection on population dynamics depends on ecological context. Under hard selection, an individual's fitness is independent of the population's phenotypic composition, and substantial population declines can occur when phenotypes are mismatched with the environment. In contrast, under soft selection, an individual's fitness is influenced by its phenotype relative to other interacting conspecifics. Soft selection generally influences which, but not how many, individuals survive and reproduce, resulting in little effect on population growth. Despite these important differences, the distinction between hard and soft selection is rarely considered in ecology. Here, we review and synthesize literature on hard and soft selection, explore their ecological causes and implications and highlight their conservation relevance to climate change, inbreeding depression, outbreeding depression and harvest. Overall, these concepts emphasise that natural selection and evolution may often have negligible or counterintuitive effects on population growth—underappreciated outcomes that have major implications in a rapidly changing world.more » « less
- 
            Many bacterial traits important to host-microbe symbiosis are determined by genes carried on extrachromosomal replicons such as plasmids, chromids, and integrative and conjugative elements. Multiple such replicons often coexist within a single cell and, due to horizontal mobility, have patterns of variation and evolutionary histories that are distinct from each other and from the bacterial chromosome. In nitrogen-fixing Rhizobium, genes carried on multiple plasmids make up almost 50% of the genome, are necessary for the formation of symbiosis, and underlie bacterial traits including host plant benefits. Thus the genomics and transmission of plasmids in Rhizobium underlie the ecology and evolution of this important model symbiont. Here we leverage a natural population of clover-associated Rhizobium in which partner quality has declined in response to long-term nitrogen fertilization. We use 62 novel, reference-quality genomes to characterize 257 replicons in the plasmidome and study their genomics and transmission patterns. We find that, of the four most frequent plasmid types, two (types II & III) have more stable size, larger core genomes, and track the chromosomal phylogeny (display more vertical transmission), while others (types I & IV – the symbiosis plasmid, or pSym) vary substantially in size, shared gene content, and have phylogenies consistent with frequent horizontal transmission. We also find differentiation in pSym subtypes driven by long-term nitrogen fertilization. Our results highlight the variation in plasmid transmission dynamics within a single symbiont and implicate plasmid horizontal transmission in the evolution of partner quality.more » « less
- 
            Plasmids are extrachromosomal DNA molecules that can be transferred vertically as well as horizontally between bacteria. They have been shown to code for numerous bacterial phenotypes, the most concerning of which is resistance to commonly used antibiotics. Plasmid-mediated transfer of drug resistance genes has notably led to the rapid spread of resistant strains, which now presents a human health crisis. While this rapid evolution of bacteria due to horizontal plasmid transfer has historically dominated this research field, increasing attention is being paid to the (co-)evolutionary interactions that shape the long-term population dynamics of bacteria and plasmids.more » « less
- 
            Studies of eco‐evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short‐term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco‐evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco‐evolutionary dynamics in nature.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
