Studies of eco‐evolutionary dynamics have integrated evolution with ecological processes at multiple scales (populations, communities and ecosystems) and with multiple interspecific interactions (antagonistic, mutualistic and competitive). However, evolution has often been conceptualised as a simple process: short‐term directional adaptation that increases population growth. Here we argue that diverse other evolutionary processes, well studied in population genetics and evolutionary ecology, should also be considered to explore the full spectrum of feedback between ecological and evolutionary processes. Relevant but underappreciated processes include (1) drift and mutation, (2) disruptive selection causing lineage diversification or speciation reversal and (3) evolution driven by relative fitness differences that may decrease population growth. Because eco‐evolutionary dynamics have often been studied by population and community ecologists, it will be important to incorporate a variety of concepts in population genetics and evolutionary ecology to better understand and predict eco‐evolutionary dynamics in nature.
more »
« less
The ecological causes and consequences of hard and soft selection
Abstract Interactions between natural selection and population dynamics are central to both evolutionary‐ecology and biological responses to anthropogenic change. Natural selection is often thought to incur a demographic cost that, at least temporarily, reduces population growth. However, hard and soft selection clarify that the influence of natural selection on population dynamics depends on ecological context. Under hard selection, an individual's fitness is independent of the population's phenotypic composition, and substantial population declines can occur when phenotypes are mismatched with the environment. In contrast, under soft selection, an individual's fitness is influenced by its phenotype relative to other interacting conspecifics. Soft selection generally influences which, but not how many, individuals survive and reproduce, resulting in little effect on population growth. Despite these important differences, the distinction between hard and soft selection is rarely considered in ecology. Here, we review and synthesize literature on hard and soft selection, explore their ecological causes and implications and highlight their conservation relevance to climate change, inbreeding depression, outbreeding depression and harvest. Overall, these concepts emphasise that natural selection and evolution may often have negligible or counterintuitive effects on population growth—underappreciated outcomes that have major implications in a rapidly changing world.
more »
« less
- Award ID(s):
- 1652278
- PAR ID:
- 10448035
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Ecology Letters
- Volume:
- 24
- Issue:
- 7
- ISSN:
- 1461-023X
- Format(s):
- Medium: X Size: p. 1505-1521
- Size(s):
- p. 1505-1521
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Inbreeding depression is a key factor regulating the evolution of self-fertilization in plants. Despite predictions that inbreeding depression should evolve with selfing rates as deleterious alleles are increasingly exposed and removed by selection, evidence of purging the genetic load in wild populations is equivocal at best. This discordance could be explained, in part, if the load underlying inbreeding depression is subject to soft selection, i.e., the fitness of selfed individuals depends on the frequency and density of selfed vs. outcrossed individuals in the population. Somewhat counterintuitively, this means that populations with contrasting mutation load can have similar fitness. Soft selection against selfed individuals may be expected when there is inbreeding depression for competitive ability in density-regulated populations. We tested population-level predictions of inbreeding depression in competitive ability by creating a density series of potted plants consisting of either purely outcrossed, purely selfed, or mixed (50% outcrossed, 50% selfed) seed of the mixed-mating biennialSabatia angularis(Gentianaceae) representing ecological neighborhoods. Focusing on the growth and survival of juveniles, we show that mean plant size is independent of neighborhood composition when resources are limiting, but greatest in outcrossed neighborhoods at low densities. Across a range of densities, this manifests as stronger density-dependence in outcrossed populations compared to selfed or mixed ones. We also found significantly greater size inequalities among individuals in mixed neighborhoods, even at high densities where mean juvenile size converged, a key signature of asymmetric competition between outcrossed and selfed individuals. Our work illustrates how soft selection could shelter the genetic load underlying inbreeding depression and its demographic consequences.more » « less
-
Abstract Conjugative plasmids drive genetic diversity and evolution in microbial populations. Despite their prevalence, plasmids can impose long-term fitness costs on their hosts, altering population structure, growth dynamics, and evolutionary outcomes. In addition to long-term fitness costs, acquiring a new plasmid introduces an immediate, short-term perturbation to the cell. However, due to the transient nature of this plasmid acquisition cost, a quantitative understanding of its physiological manifestations, overall magnitudes, and population-level implications, remains unclear. To address this, here we track growth of single colonies immediately following plasmid acquisition. We find that plasmid acquisition costs are primarily driven by changes in lag time, rather than growth rate, for nearly 60 conditions covering diverse plasmids, selection environments, and clinical strains/species. Surprisingly, for a costly plasmid, clones exhibiting longer lag times also achieve faster recovery growth rates, suggesting an evolutionary tradeoff. Modeling and experiments demonstrate that this tradeoff leads to counterintuitive ecological dynamics, whereby intermediate-cost plasmids outcompete both their low and high-cost counterparts. These results suggest that, unlike fitness costs, plasmid acquisition dynamics are not uniformly driven by minimizing growth disadvantages. Moreover, a lag/growth tradeoff has clear implications in predicting the ecological outcomes and intervention strategies of bacteria undergoing conjugation.more » « less
-
Anthropogenically fragmented populations may have reduced fitness due to loss of genetic diversity and inbreeding. The extent of such fitness losses due to fragmentation and potential gains from conservation actions are infrequently assessed together empirically. Controlled crosses within and among populations can identify whether populations are at risk of inbreeding depression and whether inter-population crossing alleviates fitness loss. Because fitness depends on the environment and life stage, studies quantifying cumulative fitness over a large portion of the lifecycle in conditions that mimic natural environments are most informative. To assess the fitness consequences of habitat fragmentation, we leveraged controlled within-family, within-population, and between-population crosses to quantify inbreeding depression and heterosis in seven populations of Echinacea angustifolia within a 6,400-ha area. We then assessed cumulative offspring fitness after 14 yr of growth in a natural experimental plot (N = 1,136). The mean fitness of progeny from within-population crosses varied considerably, indicating genetic differentiation among source populations, even though these sites are all less than 9 km apart. The fitness consequences of within-family and between-population crosses varied in magnitude and direction. Only one of the seven populations showed inbreeding depression of high effect, while four populations showed substantial heterosis. Outbreeding depression was rare and slight. Our findings indicate that local crossings between isolated populations yield unpredictable fitness consequences ranging from slight decreases to substantial increases. Interestingly, inbreeding depression and heterosis did not relate closely to population size, suggesting that all fragmented populations could contribute to conservation goals as either pollen recipients or donors.more » « less
-
Anthropogenically fragmented populations may have reduced fitness due to loss of genetic diversity and inbreeding. The extent of such fitness losses due to fragmentation and potential gains from conservation actions are infrequently assessed together empirically. Controlled crosses within and among populations can identify whether populations are at risk of inbreeding depression and whether interpopulation crossing alleviates fitness loss. Because fitness depends on environment and life stage, studies quantifying cumulative fitness over a large portion of the lifecycle in conditions that mimic natural environments are most informative. To assess fitness consequences of habitat fragmentation, we leveraged controlled within-family, within-population, and between-population crosses to quantify inbreeding depression and heterosis in seven populations of Echinacea angustifolia within a 6400-hectare area. We then assessed cumulative offspring fitness after 14 years of growth in a natural experimental plot (N = 1136). Mean fitness of progeny from within-population crosses varied considerably, indicating genetic differentiation among source populations, even though these sites are all less than 9 km apart. The fitness consequences of within-family and between-population crosses varied in magnitude and direction. Only one of the seven populations showed inbreeding depression of high effect, while four populations showed substantial heterosis. Outbreeding depression was rare and slight. Our findings indicate that local crossings between isolated populations yield unpredictable fitness consequences ranging from slight decreases to substantial increases. Interestingly, inbreeding depression and heterosis did not relate closely to population size, suggesting that all fragmented populations could contribute to conservation goals as either pollen recipients or donors.more » « less
An official website of the United States government
