skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Biophysical flocculation reduces variability of cohesive sediment settling velocity
Abstract

Biophysical cohesion, introduced predominantly by Extracellular Polymeric Substances (EPS) during mineral flocculation in subaqueous environments, plays important role in morphodynamics, biogeochemical cycles and ecosystem processes. However, the mechanism of how EPS functioning with cohesive particles and affects settling behaviors remain poorly understood. We measure initial flocculation rate, floc size and settling velocity of mineral and artificial EPS (Xanthan gum) mixtures. Combining results from these and previous studies demonstrate coherent intensification of EPS-related flocculation compare with those of pure mineral and oil-mineral mixtures. Importantly, the presence of EPS fundamentally changes floc structure and reduces variability of settling velocity. Measured data shows that ratios of microfloc and macrofloc settling velocity for pure mineral flocs is 3.9 but greatly reduced to a lowest value of 1.6 due to biological EPS addition. The low variability of settling velocity due to EPS participation explains the seemingly inconsistent results previously observed between field and laboratory studies.

 
more » « less
Award ID(s):
1736668 1924532
NSF-PAR ID:
10408723
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We conducted field work in South San Francisco Bay to examine cohesive sediment flocculation dynamics in a shallow, wave‐ and current‐driven estuarine environment. Drawing on data collected using a suite of acoustic and optical instrumentation over three distinct seasons, we found that the factors driving floc size variability differed substantially when comparing locally sourced sediment (i.e., through wave‐driven resuspension) to suspended sediment advected from upstream. Statistical analysis of our extensive field data revealed additional seasonal variability in these trends, with wave stress promoting floc breakup during the summer and winter months, and biological processes encouraging floc growth during the spring productive period. Combining these data with fractal dimension estimates, we found that seasonally varying floc composition can lead to differences in floc settling velocity by a factor of approximately two to five for a given floc size. Finally, by analyzing co‐located turbulence and sediment flux measurements from the bottom boundary layer, we present evidence that the relationship between floc size and the inverse turbulent Schmidt number varies with floc structure. These results can be used to inform sediment transport modeling parameterizations in estuarine environments.

     
    more » « less
  2. The flocculation behavior of clay minerals in aquatic environments is an important process in estuarine and riverine dynamics, where strong gradients in salinity can locally occur. Various contradicting observations have been reported in the literature on the impact of salt concentration on the settling process of cohesive sediments. To address this issue in a systematic manner, we investigate the settling behavior of clay minerals as a function of the salt concentration of the ambient water. Specifically, we focus on montmorillonite as a prototype clay mineral with a high cation exchange capacity (CEC). To this end, we study suspensions of Wyoming bentonite (Volclay SPV) as a very important constituent for many constructional and industrial purposes. We perform an experimental campaign to study the settling behavior of moderately turbid montmorillonite concentrations in monovalent salt solutions with different salinities (sodium chloride) to represent different environments ranging from deionized to ocean water, respectively. The subsequent settling process was monitored by taking pictures by a camera in regular time intervals over a total observation time up to 48 h. In addition, a modified hydrometer analysis is conducted to determine the grain size distribution (in terms of an equivalent diameter) of the flocculated clay suspension in salt water. Despite the rather high cation exchange capacity of the investigated clay (CEC=88.1), our results show that the settling speed drastically increases within a range of 0.6–1.0 PSU and stays approximately constant for higher salinities. This critical salt concentration is defined here as the critical coagulation concentration (CCC) and lies well below the salinity of natural open water bodies. The hydrometer analysis revealed that 60% of the agglomerates exceed the equivalent grain size of 20 μm. Finally, the findings of this study are supplemented with experiments studying the effect of Extracellular Polymeric Substances (EPS) on the flocculation behavior of bentonite in salt water. Our results demonstrate that salinity is the original trigger for flocculation, whereas EPS allows for even larger floc size but it does not play a significant role for the settling processes of bentonite in estuarine environments. 
    more » « less
  3. Abstract

    We use in situ measurements of suspended mud to assess the flocculation state of the lowermost freshwater reaches of the Mississippi River. The goal of the study was to assess the flocculation state of the mud in the absence of seawater, the spatial distribution of floc sizes within the river, and to look for seasonal differences between summer and winter. We also examine whether measured floc sizes can explain observed vertical distributions of mud concentration through a Rouse profile analysis. Data were collected at the same locations during summer and winter at similar discharges and suspended sediment concentrations. Measurements showed that the mud in both seasons was flocculated and that the floc size could reasonably be represented by a cross‐sectional averaged value as sizes varied little over the flow depth or laterally across the river at a given station. Depth‐averaged floc sizes ranged from 75 to 200 microns and increased slightly moving downriver as turbulence levels dropped. On average, flocs were 40 microns larger during summer than in winter, likely due to enhanced microbial activity associated with warmer water. Floc size appeared to explain vertical variations in mud concentration profiles when the bed was predominately composed of sand. Average mud settling velocities for these cases ranged from 0.1 to 0.5 mm/s. However, Rouse‐estimated settling velocities ranged from 1 to 3 mm/s at two stations during winter where the bed was composed of homogeneous mud. These values exceeded the size‐based estimates of settling velocity.

     
    more » « less
  4. null (Ed.)
    Biophysical cohesive particles in aquatic systems, such as extracellular polymeric substances (EPS) and clay minerals, play an important role in determining the transport of spilled oil contamination and its eventual fate, particularly given that suspended sediment and microbial activities are often prevalent and diverse in natural environments. A series of stirring jar tests have been conducted to understand the multiple structures characteristics of the oil-mineral aggregates (OMAs) and EPS-oil-mineral aggregates (EPS-OMAs). OMAs and EPS-OMAs have been successfully generated in the laboratory within artificial seawater using: Texas crude oil (Dynamic viscosity: 7.27 × 10 –3 Pa⋅s at 20°C), two natural clay minerals (Bentonite and Kaolin clay), and Xanthan gum powder (a proxy of natural EPS). A magnetic stirrer produced a homogeneous turbulent flow with a high turbulence level similar to that under natural breaking waves. High-resolution microscopy results show that EPS, kaolinite, and bentonite lead to distinguished oil floc structures because of the different stickiness character of EPS and mineral clay particles. With relatively low stickiness, kaolinite particles tend to attach to an oil droplets surface (droplet OMAs) and become dominant in small-sized flocs in the mixture sample. In contrast, the more cohesive bentonite particles stickiness could adsorb with oil droplets and are thus dominated by larger sized flocs. Biological EPS, with the highest stickiness, demonstrated that it could bond multiple small oil droplets and form a web structure trapping oil and minerals. Generally, adding EPS leads to flake/solid OMAs formation, and individual oil droplets are rarely observed. The inclusion of ESP within the matrix, also reduced the dependence of settling velocity on floc size and mineral type. 
    more » « less
  5. null (Ed.)
    Polyelectrolyte-driven flocculation of suspended particulate in solution is an important process in a variety of industrial processes such as drinking water treatment and composite material synthesis. Flocculation depends on a wide variety of physicochemical and hydrodynamic properties, which affect floc size, growth rate, and floc morphology. Floc formation and growth behavior is explored here using two different molecular weights of a cationic polyacrylamide flocculant and anisotropic Na-bentonite clay particles under a variety of solution ionic strengths. A Taylor–Couette cell with radial injection capabilities was used to study the effects of solution ionic strength and polyelectrolyte molecular weight on floc size, growth rate, and floc morphology during the flocculation process with a constant global velocity gradient. The floc size generally decreased with increasing ionic strength whereas the floc growth rate initially increased then decreased. This likely occurred due to charge screening effects, where increased bentonite aggregate size and a less expanded polyelectrolyte conformation at higher ionic strengths results in a decreased ability for the polyelectrolyte to bridge multiple bentonite aggregates. The densification of bentonite aggregates at higher ionic strengths resulted in floc morphologies that were more resistant to shear-induced breakage. With the exceptions of optimal dose concentration and dispersion coefficients, there were no clear differences in the floc growth rate behaviors for the two molecular weights studied. This work contributes to an improved understanding of the physicochemical complexities of polyelectrolyte-driven flocculation that can inform dosing requirements for more efficient industrial operations. 
    more » « less