Due to the flocculation process, suspended mud aggregates carried by rivers to the coastal ocean are thought to undergo changes in size and shape in response to environmental drivers such as turbulence, sediment concentration, organic matter (OM), and salinity. Some have assumed that salt is necessary for floc formation, and that mud, therefore, reaches the estuary unflocculated. Yet mud flocs exist in freshwater systems long before the estuarine zone, likely due to the presence of OM acting as a floc‐promoting binder. Therefore, it is important to consider how salinity affects flocculation, if at all, in the presence of OM. Here, we used experiments to examine the flocculation of a natural mud with and without OM. Results showed that the rate of floc growth and equilibrium size both increase with salinity regardless of the presence or absence of OM. However, the response of both to salinity was stronger when OM was present. In deionized water, natural sediment with OM was seen to produce large flocs. However, the size distribution of the suspension tended to be bimodal. With the addition of salt, increasing amounts of unflocculated material became bound within flocs, producing a more unimodal size distribution. Here, the enhancing effects of salt were noticeable at even 0.5 ppt, and increases in salinity past 3–5 ppt only marginally increased the floc growth rate and final size. Data from the experiment were used to develop a salinity‐dependent model to account for changes in floc growth rate and equilibrium size.
We conducted field work in South San Francisco Bay to examine cohesive sediment flocculation dynamics in a shallow, wave‐ and current‐driven estuarine environment. Drawing on data collected using a suite of acoustic and optical instrumentation over three distinct seasons, we found that the factors driving floc size variability differed substantially when comparing locally sourced sediment (i.e., through wave‐driven resuspension) to suspended sediment advected from upstream. Statistical analysis of our extensive field data revealed additional seasonal variability in these trends, with wave stress promoting floc breakup during the summer and winter months, and biological processes encouraging floc growth during the spring productive period. Combining these data with fractal dimension estimates, we found that seasonally varying floc composition can lead to differences in floc settling velocity by a factor of approximately two to five for a given floc size. Finally, by analyzing co‐located turbulence and sediment flux measurements from the bottom boundary layer, we present evidence that the relationship between floc size and the inverse turbulent Schmidt number varies with floc structure. These results can be used to inform sediment transport modeling parameterizations in estuarine environments.
more » « less- Award ID(s):
- 1736668
- NSF-PAR ID:
- 10390621
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Oceans
- Volume:
- 127
- Issue:
- 6
- ISSN:
- 2169-9275
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Muddy sediment constitutes a major fraction of the suspended sediment mass carried by the Mississippi River. Thus, adequate knowledge of the transport dynamics of suspended mud in this region is critical in devising efficient management plans for coastal Louisiana. We conducted laboratory tank experiments on the sediment suspended in the lower reaches of the Mississippi River to provide insight into the flocculation behavior of the mud. In particular, we measure how the floc size distribution responds to changing environmental factors of turbulent energy, sediment concentration, and changes in base water composition and salinity during summer and winter. We also compare observations from the tank experiments to
in situ observations. Turbulence shear rate, a measure of river hydrodynamic energy, was found to be the most influential factor in determining mud floc size. All flocs produced at a given shear rate could be kept in suspension down to shear rates of approximately 20 s−1. At this shear rate, flocs on the order of 150–200 μm and larger can settle out. Equilibrium floc size was not found to depend on sediment concentration; flocs larger than 100 μm formed in sediment concentrations as low as 20 mgL−1. An increase in salinity generated by adding salts to river water suspensions did not increase the flocculation rate or equilibrium size. However, the addition of water collected from the Gulf of Mexico to river-water suspensions did enhance the flocculation rate and the equilibrium sizes. We speculate that the effects of Gulf of Mexico water originate from its biomatter content rather than its ion composition. Floc sizes in the mixing tanks were comparable to those from the field for similar estimated turbulent energy. Flocs were found to break within minutes under increased turbulence but can take hours to grow under conditions of reduced shear in freshwater settings. Growth was faster with the addition of Gulf of Mexico water. Overall, the experiments provide information on how suspended mud in the lower reaches of the Mississippi might respond to changes in turbulence and salinity moving from the fluvial to marine setting through natural distributary channels or man-made diversions. -
Abstract We use in situ measurements of suspended mud to assess the flocculation state of the lowermost freshwater reaches of the Mississippi River. The goal of the study was to assess the flocculation state of the mud in the absence of seawater, the spatial distribution of floc sizes within the river, and to look for seasonal differences between summer and winter. We also examine whether measured floc sizes can explain observed vertical distributions of mud concentration through a Rouse profile analysis. Data were collected at the same locations during summer and winter at similar discharges and suspended sediment concentrations. Measurements showed that the mud in both seasons was flocculated and that the floc size could reasonably be represented by a cross‐sectional averaged value as sizes varied little over the flow depth or laterally across the river at a given station. Depth‐averaged floc sizes ranged from 75 to 200 microns and increased slightly moving downriver as turbulence levels dropped. On average, flocs were 40 microns larger during summer than in winter, likely due to enhanced microbial activity associated with warmer water. Floc size appeared to explain vertical variations in mud concentration profiles when the bed was predominately composed of sand. Average mud settling velocities for these cases ranged from 0.1 to 0.5 mm/s. However, Rouse‐estimated settling velocities ranged from 1 to 3 mm/s at two stations during winter where the bed was composed of homogeneous mud. These values exceeded the size‐based estimates of settling velocity.
-
Abstract Biophysical cohesion, introduced predominantly by Extracellular Polymeric Substances (EPS) during mineral flocculation in subaqueous environments, plays important role in morphodynamics, biogeochemical cycles and ecosystem processes. However, the mechanism of how EPS functioning with cohesive particles and affects settling behaviors remain poorly understood. We measure initial flocculation rate, floc size and settling velocity of mineral and artificial EPS (Xanthan gum) mixtures. Combining results from these and previous studies demonstrate coherent intensification of EPS-related flocculation compare with those of pure mineral and oil-mineral mixtures. Importantly, the presence of EPS fundamentally changes floc structure and reduces variability of settling velocity. Measured data shows that ratios of microfloc and macrofloc settling velocity for pure mineral flocs is 3.9 but greatly reduced to a lowest value of 1.6 due to biological EPS addition. The low variability of settling velocity due to EPS participation explains the seemingly inconsistent results previously observed between field and laboratory studies.
-
Abstract Natural sediment flocs are fragile, highly irregular, loosely bound aggregates comprising minerogenic and organic material. They contribute a major component of suspended sediment load and are critical for the fate and flux of sediment, carbon and pollutants in aquatic environments. Understanding their behaviour is essential to the sustainable management of waterways, fisheries and marine industries. For several decades, modelling approaches have utilised fractal mathematics and observations of two dimensional (2D) floc size distributions to infer levels of aggregation and predict their behaviour. Whilst this is a computationally simple solution, it is highly unlikely to reflect the complexity of natural sediment flocs and current models predicting fine sediment hydrodynamics are not efficient. Here, we show how new observations of fragile floc structures in three dimensions (3D) demonstrate unequivocally that natural flocs are non-fractal. We propose that floc hierarchy is based on observations of 3D structure and function rather than 2D size distribution. In contrast to fractal theory, our data indicate that flocs possess characteristics of emergent systems including non-linearity and scale-dependent feedbacks. These concepts and new data to quantify floc structures offer the opportunity to explore new emergence-based floc frameworks which better represent natural floc behaviour and could advance our predictive capacity.more » « less