skip to main content

Title: Constraining quenching time-scales in galaxy clusters by forward-modelling stellar ages and quiescent fractions in projected phase space

We forward-model mass-weighted stellar ages (MWAs) and quiescent fractions (fQ) in projected phase space (PPS), using data from the Sloan Digital Sky Survey, to jointly constrain an infall quenching model for galaxies in log (Mvir/M⊙) > 14 galaxy clusters at z ∼ 0. We find the average deviation in MWA from the MWA–M⋆ relation depends on position in PPS, with a maximum difference between the inner cluster and infalling interloper galaxies of ∼1 Gyr. Our model employs infall information from N-body simulations and stochastic star-formation histories from the universemachine model. We find total quenching times of tQ = 3.7 ± 0.4 Gyr and tQ = 4.0 ± 0.2 Gyr after first pericentre, for 9 < log (M⋆/M⊙) < 10 and 10 < log (M⋆/M⊙) < 10.5 galaxies, respectively. By using MWAs, we break the degeneracy in time of quenching onset and time-scale of star formation rate (SFR) decline. We find that time of quenching onset relative to pericentre is $t_{\mathrm{delay}}=3.5^{+0.6}_{-0.9}$ Gyr and $t_{\mathrm{delay}}=-0.3^{+0.8}_{-1.0}$ Gyr for 9 < log (M⋆/M⊙) < 10 and 10 < log (M⋆/M⊙) < 10.5 galaxies, respectively, and exponential SFR suppression time-scales are τenv ≤ 1.0 Gyr for 9 < log (M⋆/M⊙) < 10 galaxies and τenv ∼ 2.3 Gyr for 10 < log (M⋆/M⊙) < 10.5 galaxies. Stochastic star formation histories remove the need for rapid infall quenching to maintain the bimodality in the SFR of cluster galaxies; the depth of the green valley prefers quenching onsets close to first pericentre and a longer quenching envelope, in slight tension with the MWA-driven results. Taken together these results suggest that quenching begins close to, or just after pericentre, but the time-scale for quenching to be fully complete is much longer and therefore ram-pressure stripping is not complete on first pericentric passage.

more » « less
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 1779-1799
["p. 1779-1799"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We measure the rate of environmentally driven star formation quenching in galaxies at z ∼ 1, using eleven massive ($M\approx 2\times 10^{14}\, \mathrm{M}_\odot$) galaxy clusters spanning a redshift range 1.0 < z < 1.4 from the GOGREEN sample. We identify three different types of transition galaxies: ‘green valley’ (GV) galaxies identified from their rest-frame (NUV − V) and (V − J) colours; ‘blue quiescent’ (BQ) galaxies, found at the blue end of the quiescent sequence in (U − V) and (V − J) colour; and spectroscopic post-starburst (PSB) galaxies. We measure the abundance of these galaxies as a function of stellar mass and environment. For high-stellar mass galaxies (log M/M⊙ > 10.5) we do not find any significant excess of transition galaxies in clusters, relative to a comparison field sample at the same redshift. It is likely that such galaxies were quenched prior to their accretion in the cluster, in group, filament, or protocluster environments. For lower stellar mass galaxies (9.5 < log M/M⊙ < 10.5) there is a small but significant excess of transition galaxies in clusters, accounting for an additional ∼5–10 per cent of the population compared with the field. We show that our data are consistent with a scenario in which 20–30 per cent of low-mass, star-forming galaxies in clusters are environmentally quenched every Gyr, and that this rate slowly declines from z = 1 to z = 0. While environmental quenching of these galaxies may include a long delay time during which star formation declines slowly, in most cases this must end with a rapid (τ < 1 Gyr) decline in star formation rate. 
    more » « less

    We use the simba cosmological galaxy formation simulation to investigate the relationship between major mergers ($\lesssim$4:1), starbursts, and galaxy quenching. Mergers are identified via sudden jumps in stellar mass M* well above that expected from in situ star formation, while quenching is defined as going from specific star formation rate (sSFR) $\gt t_{\rm H}^{-1}$ to $\lt 0.2t_{\rm H}^{-1}$, where tH is the Hubble time. At z ≈ 0–3, mergers show ∼2–3× higher SFR than a mass-matched sample of star-forming galaxies, but globally represent $\lesssim 1{{\ \rm per\ cent}}$ of the cosmic SF budget. At low masses, the increase in SFR in mergers is mostly attributed to an increase in the H2 content, but for $M_*\gtrsim 10^{10.5} \,\mathrm{ M}_{\odot }$ mergers also show an elevated star formation efficiency suggesting denser gas within merging galaxies. The merger rate for star-forming galaxies shows a rapid increase with redshift, ∝(1 + z)3.5, but the quenching rate evolves much more slowly, ∝(1 + z)0.9; there are insufficient mergers to explain the quenching rate at $z\lesssim 1.5$. simba first quenches galaxies at $z\gtrsim 3$, with a number density in good agreement with observations. The quenching time-scales τq are strongly bimodal, with ‘slow’ quenchings (τq ∼ 0.1tH) dominating overall, but ‘fast’ quenchings (τq ∼ 0.01tH) dominating in M* ∼ 1010–1010.5 M$\odot$ galaxies, likely induced by simba’s jet-mode black hole feedback. The delay time distribution between mergers and quenching events suggests no physical connection to either fast or slow quenching. Hence, simba predicts that major mergers induce starbursts, but are unrelated to quenching in either fast or slow mode.

    more » « less

    We investigate the role of dense environments in suppressing star formation by studying $\rm \log _{10}(M_\star /M_\odot) \gt 9.7$ star-forming galaxies in nine clusters from the Local Cluster Survey (0.0137 < z < 0.0433) and a large comparison field sample drawn from the Sloan Digital Sky Survey. We compare the star formation rate (SFR) with stellar mass relation as a function of environment and morphology. After carefully controlling for mass, we find that in all environments, the degree of SFR suppression increases with increasing bulge-to-total (B/T) ratio. In addition, the SFRs of cluster and infall galaxies at a fixed mass are more suppressed than their field counterparts at all values of B/T. These results suggest a quenching mechanism that is linked to bulge growth that operates in all environments and an additional mechanism that further reduces the SFRs of galaxies in dense environments. We limit the sample to B/T ≤ 0.3 galaxies to control for the trends with morphology and find that the excess population of cluster galaxies with suppressed SFRs persists. We model the time-scale associated with the decline of SFRs in dense environments and find that the observed SFRs of the cluster core galaxies are consistent with a range of models including a mechanism that acts slowly and continuously over a long (2–5 Gyr) time-scale, and a more rapid (<1 Gyr) quenching event that occurs after a delay period of 1–6 Gyr. Quenching may therefore start immediately after galaxies enter clusters.

    more » « less

    Low-mass galaxies are highly susceptible to environmental effects that can efficiently quench star formation. We explore the role of ram pressure in quenching low-mass galaxies ($M_{*}\sim 10^{5}{-}10^{9}\, \rm {M}_{\odot }$) within 2 Mpc of Milky Way (MW) hosts using the FIRE-2 simulations. Ram pressure is highly variable across different environments, within individual MW haloes, and for individual low-mass galaxies over time. The impulsiveness of ram pressure – the maximum ram pressure scaled to the integrated ram pressure prior to quenching – correlates with whether a galaxy is quiescent or star forming. The time-scale between maximum ram pressure and quenching is anticorrelated with impulsiveness, such that high impulsiveness corresponds to quenching time-scales <1 Gyr. Galaxies in low-mass groups ($M_\mathrm{*,host}10^{7}{-}10^{9}\, \rm {M}_{\odot }$) outside of MW haloes experience typical ram pressure only slightly lower than ram pressure on MW satellites, helping to explain effective quenching via group preprocessing. Ram pressure on MW satellites rises sharply with decreasing distance to the host, and, at a fixed physical distance, more recent pericentre passages are typically associated with higher ram pressure because of greater gas density in the inner host halo at late times. Furthermore, the ram pressure and gas density in the inner regions of Local Group-like paired host haloes are higher at small angles off the host galaxy disc compared to isolated hosts. The quiescent fraction of satellites within these low-latitude regions is also elevated in the simulations and observations, signaling possible anisotropic quenching via ram pressure around MW-mass hosts.

    more » « less

    The star formation and gas content of satellite galaxies around the Milky Way (MW) and Andromeda (M31) are depleted relative to more isolated galaxies in the Local Group (LG) at fixed stellar mass. We explore the environmental regulation of gas content and quenching of star formation in z = 0 galaxies at $M_{*}=10^{5\!-\!10}\, \rm {M}_{\odot }$ around 14 MW-mass hosts from the Feedback In Realistic Environments 2 (FIRE-2) simulations. Lower mass satellites ($M_{*}\lesssim 10^7\, \rm {M}_{\odot }$) are mostly quiescent and higher mass satellites ($M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$) are mostly star forming, with intermediate-mass satellites ($M_{*}\approx 10^{7\!-\!8}\, \rm {M}_{\odot }$) split roughly equally between quiescent and star forming. Hosts with more gas in their circumgalactic medium have a higher quiescent fraction of massive satellites ($M_{*}=10^{8\!-\!9}\, \rm {M}_{\odot }$). We find no significant dependence on isolated versus paired (LG-like) host environments, and the quiescent fractions of satellites around MW-mass and Large Magellanic Cloud (LMC)-mass hosts from the FIRE-2 simulations are remarkably similar. Environmental effects that lead to quenching can also occur as pre-processing in low-mass groups prior to MW infall. Lower mass satellites typically quenched before MW infall as central galaxies or rapidly during infall into a low-mass group or a MW-mass galaxy. Most intermediate- to high-mass quiescent satellites have experienced ≥1–2 pericentre passages (≈2.5–5 Gyr) within a MW-mass halo. Most galaxies with $M_{*}\gtrsim 10^{6.5}\, \rm {M}_{\odot }$ did not quench before falling into a host, indicating a possible upper mass limit for isolated quenching. The simulations reproduce the average trend in the LG quiescent fraction across the full range of satellite stellar masses. Though the simulations are consistent with the Satellites Around Galactic Analogs (SAGA) survey’s quiescent fraction at $M_{*}\gtrsim 10^8\, \rm {M}_{\odot }$, they do not generally reproduce SAGA’s turnover at lower masses.

    more » « less