skip to main content


Title: Ancient Lowland Maya neighborhoods: Average Nearest Neighbor analysis and kernel density models, environments, and urban scale
Many humans live in large, complex political centers, composed of multi-scalar communities including neighborhoods and districts. Both today and in the past, neighborhoods form a fundamental part of cities and are defined by their spatial, architectural, and material elements. Neighborhoods existed in ancient centers of various scales, and multiple methods have been employed to identify ancient neighborhoods in archaeological contexts. However, the use of different methods for neighborhood identification within the same spatiotemporal setting results in challenges for comparisons within and between ancient societies. Here, we focus on using a single method—combining Average Nearest Neighbor (ANN) and Kernel Density (KD) analyses of household groups—to identify potential neighborhoods based on clusters of households at 23 ancient centers across the Maya Lowlands. While a one-size-fits all model does not work for neighborhood identification everywhere, the ANN/KD method provides quantifiable data on the clustering of ancient households, which can be linked to environmental zones and urban scale. We found that centers in river valleys exhibited greater household clustering compared to centers in upland and escarpment environments. Settlement patterns on flat plains were more dispersed, with little discrete spatial clustering of households. Furthermore, we categorized the ancient Maya centers into discrete urban scales, finding that larger centers had greater variation in household spacing compared to medium-sized and smaller centers. Many larger political centers possess heterogeneity in household clustering between their civic-ceremonial cores, immediate hinterlands, and far peripheries. Smaller centers exhibit greater household clustering compared to larger ones. This paper quantitatively assesses household clustering among nearly two dozen centers across the Maya Lowlands, linking environment and urban scale to settlement patterns. The findings are applicable to ancient societies and modern cities alike; understanding how humans form multi-scalar social groupings, such as neighborhoods, is fundamental to human experience and social organization.  more » « less
Award ID(s):
1952503
NSF-PAR ID:
10408783
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; « less
Editor(s):
Hart, John P.
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
11
ISSN:
1932-6203
Page Range / eLocation ID:
e0275916
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present results from the archaeological analysis of 331 km2 of high-resolution airborne lidar data collected in the Upper Usumacinta River basin of Mexico and Guatemala. Multiple visualizations of the DEM and multi-spectral data from four lidar transects crossing the Classic period (AD 350–900) Maya kingdoms centered on the sites of Piedras Negras, La Mar, and Lacanja Tzeltal permitted the identification of ancient settlement and associated features of agricultural infrastructure. HDBSCAN (hierarchical density-based clustering of applications with noise) cluster analysis was applied to the distribution of ancient structures to define urban, peri-urban, sub-urban, and rural settlement zones. Interpretations of these remotely sensed data are informed by decades of ground-based archaeological survey and excavations, as well as a rich historical record drawn from inscribed stone monuments. Our results demonstrate that these neighboring kingdoms in three adjacent valleys exhibit divergent patterns of structure clustering and low-density urbanism, distributions of agricultural infrastructure, and economic practices during the Classic period. Beyond meeting basic subsistence needs, agricultural production in multiple areas permitted surpluses likely for the purposes of tribute, taxation, and marketing. More broadly, this research highlights the strengths of HDBSCAN to the archaeological study of settlement distributions when compared to more commonly applied methods of density-based cluster analysis. 
    more » « less
  2. Research in Southern Belize has produced a 1000-year record of coupled human and environmental relationships at the ancient Maya city Uxbenká. Located at the southeastern margin of the Maya Lowlands, this region has excellent agricultural land and some of the highest rainfall in the Maya region. Uxbenká was the founding political center in southern Belize after 100 BCE. After 850 years, Uxbenká experienced a long geopolitical disintegration ending in depopulation as part of broad regional collapse. We use kernel density and summed probability distributions of 167 high-precision AMS14C dates to reconstruct relative changes in population and investments in the built environment throughout the growth and decline of the polity. Those data are compared to an annually resolved speleothem paleoclimate record from Yok Balum cave, located less than 3 km from Uxbenká’s civic ceremonial core. With no Classic Period wetland fields or evidence for large-scale landscape investments in agricultural intensification, food production would have been rainfall dependent as was water availability for household use. Using a 30 m SRTM DEM, we compute flow accumulation and the upvalley extents of river networks while varying the input precipitation to reflect hypothesized changes in paleorainfall over time. Our data suggest that Uxbenká experienced rapid growth following a severe drought at 200 CE, as well as cycles of growth and contraction until just after 750 CE. We find that geopolitical disintegration in southern Belize was already underway when a severe drought began at 830 CE. That six-decade drought likely contributed to the abandonment of Uxbenká and limited geopolitical reorganization.

     
    more » « less
  3. Zerboni, A (Ed.)
    The application of lidar remote-sensing technology has revolutionized the practice of settlement and landscape archaeology, perhaps nowhere more so than in the Maya lowlands. This contribution presents a substantial lidar dataset from the Puuc region of Yucatan, Mexico, a cultural subregion of the ancient Maya and a distinct physiographic zone within the Yucatan peninsula. Despite the high density of known sites, no large site has been fully surveyed, and little is known about intersite demography. Lidar technology allows determination of settlement distribution for the first time, showing that population was elevated but nucleated, although without any evidence of defensive features. Population estimates suggest a region among the most densely settled within the Maya lowlands, though hinterland levels are modest. Lacking natural bodies of surface water, the ancient Puuc inhabitants relied upon various storage technologies, primarily chultuns (cisterns) and aguadas (natural or modified reservoirs for potable water). Both are visible in the lidar imagery, allowing calculation of aguada capacities by means of GIS software. The imagery also demonstrates an intensive and widespread stone working industry. Ovens visible in the imagery were probably used for the production of lime, used for construction purposes and perhaps also as a softening agent for maize. Quarries can also be discerned, including in some cases substantial portions of entire hills. With respect to agriculture, terrain classification permits identification of patches of prime cultivable land and calculation of their extents. Lidar imagery also provides the first unequivocal evidence for terracing in the Puuc, indeed in all northern Yucatan. Finally, several types of civic architecture and architectural complexes are visible, including four large acropolises probably dating to the Middle Formative period (700–450 B. C.). Later instances of civic architecture include numerous Early Puuc Civic Complexes, suggesting a common form of civic organization at the beginning of the Late Classic demographic surge, (A.D. 600–750). 
    more » « less
  4. Recent excavations at the Maya site of Aventura, Belize provide insights into the social, economic, and environmental resources available to the residents of its ancient urban community. In 2019, the Aventura Archaeology Project (AAP) horizontally excavated three households and continued vertical test-pit investigations across commoner and elite domestic groups. The horizontal excavations, comparable to previous excavations of households in 2018, provided new insights into the similarities and differences between structures, features, burials, and middens across status groups at Aventura. One household excavation, Group 54, elucidated commoners’ access and relationships to a nearby water management feature. Commoner household excavations at Group 24, one of the smallest mound features identified by the AAP survey, revealed that even the smallest of Aventura’s households had access, though limited, to cut limestone blocks for domestic architecture. Excavations of an elite patio group, Group 38, to the north of the site core provided architectural data which complicate distinctions between elite and non-elite households. These excavations of households across the site also revealed a pattern of primary and secondary subfloor-burial deposits across elite and non-elite groups, which may indicate an attempt to socially integrate households of all statuses into Aventura’s urban community. Vertical test excavations further support Aventura’s community was inhabited over the long-term, with multiple households revealing Early and Middle Classic materials, and all households revealing occupation during the Late to Terminal Classic transition. Together, household excavations provide insights into the social, economic, and environmental forces that shaped the lives of Aventura’s urban community, bringing better focus to heterogenous and enduring urban populations during dynamic periods of Maya society. 
    more » « less
  5. Abstract Urban neighborhoods with locations of environmental contamination, known as brownfields, impact entire neighborhoods, but corrective environmental remedial action on brownfields is often tracked on an individual property basis, neglecting the larger neighborhood-level impact. This study addresses this impact by examining spatial differences between brownfields with unmitigated environmental concerns (open site) and sites that are considered fully mitigated or closed in urban neighborhoods (closed site) on the US census tract scale in Wayne County, MI. Michigan’s Department of Environment, Great Lakes, and Energy’s leaking underground storage tank (LUST) database provided brownfield information for Wayne County. Local indicators of spatial association (LISA) produced maps of spatial clustering and outliers. A McNemar’s test demonstrated significant discordances in LISA categories between LUST open and closed sites ( p  < 0.001). Geographically weighted regressions (GWR) evaluated the association between open and closed site spatial density (open-closed) with socioeconomic variables (population density, proportion of White or Black residents, proportion of college educated populations, the percentage of owner-occupied units, vacant units, rented units, and median household value). Final multivariate GWR showed that population density, being Black, college education, vacant units, and renter occupied units were significantly associated ( p  < 0.05) with open-closed, and that those associations varied across Wayne County. Increases in Black population was associated with increased open-closed. Increases in vacant units, renter-occupied units, and college education were associated with decreased open-closed. These results provide input for environmental justice research to identify inequalities and discover the distribution of environmental hazards among urban neighborhoods. 
    more » « less