skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vanadium MXenes materials for next-generation energy storage devices
Abstract Batteries and supercapacitors have emerged as promising candidates for next-generation energy storage technologies. The rapid development of new two-dimensional (2D) electrode materials indicates a new era in energy storage devices. MXenes are a new type of layered 2D transition metal carbides, nitrides, or carbonitrides that have drawn much attention because of their excellent electrical conductivity, electrochemical and hydrophilic properties, large surface area, and attractive topological structure. This review focuses on various synthesis methods to prepare vanadium carbide MXenes with and without etchants like hydrofluoric acid, lithium fluoride, and hydrochloric acid to remove the ‘A’ layers of the MAX phase. The goal is to demonstrate the utilization of a less toxic etching method to achieve MXenes of comparable properties to those prepared by traditional methods. The influence of intercalation on the effect of high interlayer spacing between the MXene layers and the performance of MXenes as supercapacitor and battery electrodes is also addressed in this review. Lastly, the gaps in the current knowledge for vanadium carbide MXenes in synthesis, scalability, and utilization in more energy storage devices were discussed.  more » « less
Award ID(s):
2101001
PAR ID:
10408788
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Nanotechnology
Volume:
34
Issue:
25
ISSN:
0957-4484
Page Range / eLocation ID:
252001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hagfeldt, Anders (Ed.)
    Supercapacitors are widely recognized as a favorable option for energy storage due to their higher power density compared to batteries, despite their lower energy density. However, to meet the growing demand for increased energy capacity, it is crucial to explore innovative materials that can enhance energy storage efficiency. Recent research has focused on investigating various electrode materials for use in supercapacitors, with particular attention given to MXenes. MXenes exhibit immense potential for energy storage due to their unique characteristics, including a 2D van der Waals layered structure, small band gaps, hydrophilic surface, excellent electrical conductivity, high specific surface area, and active redox sites on the surface facilitated by transition metals. These attributes collectively contribute to their promising stability, energy and power density, and overall lifespan. This comprehensive review explores a diverse array of topics pertaining to the latest 2D MXene-based supercapacitor electrodes. It encompasses discussions on different synthesis methods, electrode structures, the underlying working mechanisms, and the impact of electrolytes on supercapacitor performance. Additionally, a concise overview of various types of MXene materials is presented, ranging from titanium-based MXenes to niobium-based MXenes, vanadium-based MXenes, molybdenum-based MXenes, and tantalum-based MXenes. Furthermore, this review focuses on electronic structure engineering strategies such as heterostructures based on MXenes, heteroatom-doping based on MXenes, polymer based MXenes, and ternary composites based on MXenes, all of which contribute to improving the electrochemical performance of supercapacitors. The review thoroughly examines the advantages and disadvantages of MXene-based supercapacitor electrodes, offering a comprehensive understanding of their strengths and limitations. Additionally, it discusses the structural stability of MXene-based electrodes after electrochemical testing, as well as their applications in daily human life, particularly focusing on the uses of MXene-based flexible wearable energy storage for real-world applications. In the end, the challenges and prospects of MXenes in supercapacitors are discussed. 
    more » « less
  2. Abstract MXenes are 2D materials with relatively high surface areas, high electrical conductivities, functional transition metal surfaces, tunable surface chemistries, and solution processability. Due to these properties, 2D MXenes have attracted widespread attention as electrode materials for energy storage devices, including electrochemical capacitors, with high power and energy densities. However, many studies have shown that the electrochemical performance of MXene electrodes is considerably affected by their structure and morphology. These properties are, for the most part, controlled by the method used for the assembly of 2D MXene flakes and the electrode fabrication methods. A successful electrode assembly and fabrication method should address several challenges, such as the restacking of 2D flakes, to achieve electrode structures and morphologies that deliver high ionic transport properties, electrical conductivity, and mechanical stability. This review aims to provide insight into the current state‐of‐the‐art assembly and fabrication methods used to design and fabricate high performance electrodes based on MXenes. The major challenges to be addressed and possible future directions in the fabrication of MXene electrodes for practical energy storage applications are highlighted. 
    more » « less
  3. MXenes are a rapidly growing class of 2D transition metal carbides and nitrides, finding applications in fields ranging from energy storage to electromagnetic interference shielding and transparent conductive coatings. However, while more than 20 carbide MXenes have already been synthesized, Ti 4 N 3 and Ti 2 N are the only nitride MXenes reported so far. Here by ammoniation of Mo 2 CT x and V 2 CT x MXenes at 600 °C, we report on their transformation to 2D metal nitrides. Carbon atoms in the precursor MXenes are replaced with N atoms, resulting from the decomposition of ammonia molecules. The crystal structures of the resulting Mo 2 N and V 2 N were determined with transmission electron microscopy and X-ray pair distribution function analysis. Our results indicate that Mo 2 N retains the MXene structure and V 2 C transforms to a mixed layered structure of trigonal V 2 N and cubic VN. Temperature-dependent resistivity measurements of the nitrides reveal that they exhibit metallic conductivity, as opposed to semiconductor-like behavior of their parent carbides. As important, room-temperature electrical conductivity values of Mo 2 N and V 2 N are three and one order of magnitude larger than those of the Mo 2 CT x and V 2 CT x precursors, respectively. This study shows how gas treatment synthesis such as ammoniation can transform carbide MXenes into 2D nitrides with higher electrical conductivities and metallic behavior, opening a new avenue in 2D materials synthesis. 
    more » « less
  4. null (Ed.)
    A decade after the first report, the family of two-dimensional (2D) carbides and nitrides (MXenes) includes structures with three, five, seven, or nine layers of atoms in an ordered or solid solution form. Dozens of MXene compositions have been produced, resulting in MXenes with mixed surface terminations. MXenes have shown useful and tunable electronic, optical, mechanical, and electrochemical properties, leading to applications ranging from optoelectronics, electromagnetic interference shielding, and wireless antennas to energy storage, catalysis, sensing, and medicine. Here we present a forward-looking review of the field of MXenes. We discuss the challenges to be addressed and outline research directions that will deepen the fundamental understanding of the properties of MXenes and enable their hybridization with other 2D materials in various emerging technologies. 
    more » « less
  5. 2D nanomaterials have garnered significant attention due to their unique physicochemical properties. MXene, a type of twodimensional transition metal carbide, nitride, or carbonitride, has become a focal point in materials science due to its excellent metallic conductivity, tunable chemical functional groups, outstanding mechanical properties, and unique surface chemistry [1,2]. Compared to traditional metal oxides, MXenes exhibit superior mechanical strength and flexibility, making them ideal candidates for high-performance energy storage devices (such as lithium-ion batteries and supercapacitors) as well as flexible electronic devices [3]. However, there are still some limitations, such as the self-stacking phenomenon, which restricts the improvement of its performance. Researchers have gradually expanded various types of MXene structures, enhancing their value in fields such as energy, electronics, sensing, nanofluids, computing, and the environment by tuning the element composition, surface functional groups, interlayer structure, and composite structure design [4,5]. 
    more » « less