skip to main content


Title: Quantification of congruence among gene trees with polytomies using overall success of resolution for phylogenomic coalescent analyses
Abstract

Gene‐tree‐inference error can cause species‐tree‐inference artefacts in summary phylogenomic coalescent analyses. Here we integrate two ways of accommodating these inference errors: collapsing arbitrarily or dubiously resolved gene‐tree branches, and subsampling gene trees based on their pairwise congruence. We tested the effect of collapsing gene‐tree branches with 0% approximate‐likelihood‐ratio‐test (SH‐like aLRT) support in likelihood analyses and strict consensus trees for parsimony, and then subsampled those partially resolved trees based on congruence measures that do not penalize polytomies. For this purpose we developed a new TNT script for congruence sorting (congsort), and used it to calculate topological incongruence for eight phylogenomic datasets using three distance measures: standard Robinson–Foulds (RF) distances; overall success of resolution (OSR), which is based on counting both matching and contradicting clades; and RF contradictions, which only counts contradictory clades. As expected, we found that gene‐tree incongruence was often concentrated in clades that are arbitrarily or dubiously resolved and that there was greater congruence between the partially collapsed gene trees and the coalescent and concatenation topologies inferred from those genes. Coalescent branch lengths typically increased as the most incongruent gene trees were excluded, although branch supports typically did not. We investigated two successful and complementary approaches to prioritizing genes for investigation of alignment or homology errors. Coalescent‐tree clades that contradicted concatenation‐tree clades were generally less robust to gene‐tree subsampling than congruent clades. Our preferred approach to collapsing likelihood gene‐tree clades (0% SH‐like aLRT support) and subsampling those trees (OSR) generally outperformed competing approaches for a large fungal dataset with respect to branch lengths, support and congruence. We recommend widespread application of this approach (and strict consensus trees for parsimony‐based analyses) for improving quantification of gene‐tree congruence/conflict, estimating coalescent branch lengths, testing robustness of coalescent analyses to gene‐tree‐estimation error, and improving topological robustness of summary coalescent analyses. This approach is quick and easy to implement, even for huge datasets.

 
more » « less
NSF-PAR ID:
10408933
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Cladistics
Volume:
39
Issue:
5
ISSN:
0748-3007
Page Range / eLocation ID:
p. 418-436
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A potential shortcoming of concatenation methods for species tree estimation is their failure to account for incomplete lineage sorting. Coalescent methods address this problem but make various assumptions that, if violated, can result in worse performance than concatenation. Given the challenges of analyzing DNA sequences with both concatenation and coalescent methods, retroelement insertions (RIs) have emerged as powerful phylogenomic markers for species tree estimation. Here, we show that two recently proposed quartet-based methods, SDPquartets and ASTRAL_BP, are statistically consistent estimators of the unrooted species tree topology under the coalescent when RIs follow a neutral infinite-sites model of mutation and the expected number of new RIs per generation is constant across the species tree. The accuracy of these (and other) methods for inferring species trees from RIs has yet to be assessed on simulated data sets, where the true species tree topology is known. Therefore, we evaluated eight methods given RIs simulated from four model species trees, all of which have short branches and at least three of which are in the anomaly zone. In our simulation study, ASTRAL_BP and SDPquartets always recovered the correct species tree topology when given a sufficiently large number of RIs, as predicted. A distance-based method (ASTRID_BP) and Dollo parsimony also performed well in recovering the species tree topology. In contrast, unordered, polymorphism, and Camin–Sokal parsimony (as well as an approach based on MDC) typically fail to recover the correct species tree topology in anomaly zone situations with more than four ingroup taxa. Of the methods studied, only ASTRAL_BP automatically estimates internal branch lengths (in coalescent units) and support values (i.e., local posterior probabilities). We examined the accuracy of branch length estimation, finding that estimated lengths were accurate for short branches but upwardly biased otherwise. This led us to derive the maximum likelihood (branch length) estimate for when RIs are given as input instead of binary gene trees; this corrected formula produced accurate estimates of branch lengths in our simulation study provided that a sufficiently large number of RIs were given as input. Lastly, we evaluated the impact of data quantity on species tree estimation by repeating the above experiments with input sizes varying from 100 to 100,000 parsimony-informative RIs. We found that, when given just 1000 parsimony-informative RIs as input, ASTRAL_BP successfully reconstructed major clades (i.e., clades separated by branches $>0.3$ coalescent units) with high support and identified rapid radiations (i.e., shorter connected branches), although not their precise branching order. The local posterior probability was effective for controlling false positive branches in these scenarios. [Coalescence; incomplete lineage sorting; Laurasiatheria; Palaeognathae; parsimony; polymorphism parsimony; retroelement insertions; species trees; transposon.]

     
    more » « less
  2. Ruane, Sara (Ed.)
    Abstract Some phylogenetic problems remain unresolved even when large amounts of sequence data are analyzed and methods that accommodate processes such as incomplete lineage sorting are employed. In addition to investigating biological sources of phylogenetic incongruence, it is also important to reduce noise in the phylogenomic dataset by using appropriate filtering approach that addresses gene tree estimation errors. We present the results of a case study in manakins, focusing on the very difficult clade comprising the genera Antilophia and Chiroxiphia. Previous studies suggest that Antilophia is nested within Chiroxiphia, though relationships among Antilophia+Chiroxiphia species have been highly unstable. We extracted more than 11,000 loci (ultra-conserved elements and introns) from whole genomes and conducted analyses using concatenation and multispecies coalescent methods. Topologies resulting from analyses using all loci differed depending on the data type and analytical method, with 2 clades (Antilophia+Chiroxiphia and Manacus+Pipra+Machaeopterus) in the manakin tree showing incongruent results. We hypothesized that gene trees that conflicted with a long coalescent branch (e.g., the branch uniting Antilophia+Chiroxiphia) might be enriched for cases of gene tree estimation error, so we conducted analyses that either constrained those gene trees to include monophyly of Antilophia+Chiroxiphia or excluded these loci. While constraining trees reduced some incongruence, excluding the trees led to completely congruent species trees, regardless of the data type or model of sequence evolution used. We found that a suite of gene metrics (most importantly the number of informative sites and likelihood of intralocus recombination) collectively explained the loci that resulted in non-monophyly of Antilophia+Chiroxiphia. We also found evidence for introgression that may have contributed to the discordant topologies we observe in Antilophia+Chiroxiphia and led to deviations from expectations given the multispecies coalescent model. Our study highlights the importance of identifying factors that can obscure phylogenetic signal when dealing with recalcitrant phylogenetic problems, such as gene tree estimation error, incomplete lineage sorting, and reticulation events. [Birds; c-gene; data type; gene estimation error; model fit; multispecies coalescent; phylogenomics; reticulation] 
    more » « less
  3. Abstract

    The Calyptratae, one of the most species‐rich fly clades, only originated and diversified after the Cretaceous–Palaeogene extinction event and yet exhibit high species diversity and a diverse array of life history strategies including predation, phytophagy, saprophagy, haematophagy and parasitism. We present the first phylogenomic analysis of calyptrate relationships. The analysis is based on 40 species representing all calyptrate families and on nucleotide and amino acid data for 1456 single‐copy protein‐coding genes obtained from shotgun sequencing of transcriptomes. Topologies are overall well resolved, robust and largely congruent across trees obtained with different approaches (maximum parsimony, maximum likelihood, coalescent‐based species tree, four‐cluster likelihood mapping). Many nodes have 100% bootstrap and jackknife support, but the true support varies by more than one order of magnitude [Bremer support from 3 to 3427; random addition concatenation analysis (RADICAL) gene concatenation size from 10 to 1456]. Analyses of a Dayhoff‐6 recoded amino acid dataset also support the robustness of many clades. The backbone topology Hippoboscoidea+(Fanniidae+(Muscidae+((Anthomyiidae–Scathophagidae)+Oestroidea))) is strongly supported and most families are monophyletic (exceptions: Anthomyiidae and Calliphoridae). The monotypic Ulurumyiidae is either alone or together with Mesembrinellidae as the sister group to the rest of Oestroidea. The Sarcophagidae are sister to Mystacinobiidae+Oestridae. Polleniinae emerge as sister group to Tachinidae and the monophyly of the clade Calliphorinae+Luciliinae is well supported, but the phylogenomic data cannot confidently place the remaining blowfly subfamilies (Helicoboscinae, Ameniinae, Chrysomyinae). Compared to hypotheses from the Sanger sequencing era, many clades within the muscoid grade are congruent but now have much higher support. Within much of Oestroidea, Sanger era and phylogenomic data struggle equally with regard to finding well‐supported hypotheses.

     
    more » « less
  4. Abstract

    Assessing effects of gene tree error in coalescent analyses have widely ignored coalescent branch lengths (CBLs) despite their potential utility in estimating ancestral population demographics and detecting species tree anomaly zones. However, the ability of coalescent methods to obtain accurate estimates remains largely unexplored. Errors in gene trees should lead to underestimates of the true CBL, and for a given set of comparisons, longer CBLs should be more accurate. Here, we furthered our empirical understanding of how error in gene tree quality (i.e., locus informativeness and gene tree resolution) affect CBLs using four datasets comprised of ultraconserved elements (UCE) or exons for clades that exhibit wide ranges of branch lengths. For each dataset, we compared the impact of locus informativeness (assessed using number of parsimony‐informative sites) and gene tree resolution on CBL estimates. Our results, in general, showed that CBLs were drastically shorter when estimates included low informative loci. Gene tree resolution also had an impact on UCE datasets, with polytomous gene trees producing longer branches than randomly resolved gene trees. However, resolution did not appear to affect CBL estimates from the more informative exon datasets. Thus, as expected, gene tree quality affects CBL estimates, though this can generally be minimized by using moderate filtering to select more informative loci and/or by allowing polytomies in gene trees. These approaches, as well as additional contributions to improve CBL estimation, should lead to CBLs that are useful for addressing evolutionary and biological questions.

     
    more » « less
  5. Takahashi, Aya (Ed.)
    Abstract Phylogenomic analyses routinely estimate species trees using methods that account for gene tree discordance. However, the most scalable species tree inference methods, which summarize independently inferred gene trees to obtain a species tree, are sensitive to hard-to-avoid errors introduced in the gene tree estimation step. This dilemma has created much debate on the merits of concatenation versus summary methods and practical obstacles to using summary methods more widely and to the exclusion of concatenation. The most successful attempt at making summary methods resilient to noisy gene trees has been contracting low support branches from the gene trees. Unfortunately, this approach requires arbitrary thresholds and poses new challenges. Here, we introduce threshold-free weighting schemes for the quartet-based species tree inference, the metric used in the popular method ASTRAL. By reducing the impact of quartets with low support or long terminal branches (or both), weighting provides stronger theoretical guarantees and better empirical performance than the unweighted ASTRAL. Our simulations show that weighting improves accuracy across many conditions and reduces the gap with concatenation in conditions with low gene tree discordance and high noise. On empirical data, weighting improves congruence with concatenation and increases support. Together, our results show that weighting, enabled by a new optimization algorithm we introduce, improves the utility of summary methods and can reduce the incongruence often observed across analytical pipelines. 
    more » « less