skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Title: Kinetic simulations of the filamentation instability in pair plasmas

The non-linear interaction between electromagnetic waves and plasmas attracts significant attention in astrophysics because it can affect the propagation of Fast Radio Bursts (FRBs) – luminous millisecond-duration pulses detected at radio frequency. The filamentation instability (FI) – a type of non-linear wave–plasma interaction – is considered to be dominant near FRB sources, and its non-linear development may also affect the inferred dispersion measure of FRBs. In this paper, we carry out fully kinetic particle-in-cell simulations of the FI in unmagnetized pair plasmas. Our simulations show that the FI generates transverse density filaments, and that the electromagnetic wave propagates in near vacuum between them, as in a waveguide. The density filaments keep merging until force balance between the wave ponderomotive force and the plasma pressure gradient is established. We estimate the merging time-scale and discuss the implications of filament merging for FRB observations.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
p. 2133-2144
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nonlinear effects are crucial for the propagation of fast radio bursts (FRBs) near the source. We study the filamentation of FRBs in the relativistic winds of magnetars, which are commonly invoked as the most natural FRB progenitors. As a result of filamentation, the particle number density and radiation intensity develop strong gradients along the direction of the wind magnetic field. A steady state is reached when the plasma pressure balances the ponderomotive force. In such a steady state, particles are confined in periodically spaced thin sheets, and electromagnetic waves propagate between them as in a waveguide. We show the following. (i) The dispersion relation resembles that in the initial homogeneous plasma, but the effective plasma frequency is determined by the separation of the sheets, not directly by the mean particle density. (ii) The contribution of relativistic magnetar winds to the dispersion measure of FRBs could be several orders of magnitude larger than previously thought. The dispersion measure of the wind depends on the properties of individual bursts (e.g., the luminosity) and therefore can change significantly among different bursts from repeating FRBs. (iii) Induced Compton scattering is suppressed because most of the radiation propagates in near-vacuum regions.

    more » « less

    At least some fast radio bursts (FRBs) are produced by magnetars. Even though mounting observational evidence points towards a magnetospheric origin of FRB emission, the question of the location for FRB generation continues to be debated. One argument suggested against the magnetospheric origin of bright FRBs is that the radio waves associated with an FRB may lose most of their energy before escaping the magnetosphere because the cross-section for e± to scatter large-amplitude electromagnetic waves in the presence of a strong magnetic field is much larger than the Thompson cross-section. We have investigated this suggestion and find that FRB radiation travelling through the open field line region of a magnetar’s magnetosphere does not suffer much loss due to two previously ignored factors. First, the plasma in the outer magnetosphere ($r \gtrsim 10^9$ cm), where the losses are potentially most severe, is likely to be flowing outwards at a high Lorentz factor γp ≥ 103. Secondly, the angle between the wave vector and the magnetic field vector, θB, in the outer magnetosphere is likely of the order of 0.1 radian or smaller due in part to the intense FRB pulse that tilts open magnetic field lines so that they get aligned with the pulse propagation direction. Both these effects reduce the interaction between the FRB pulse and the plasma substantially. We find that a bright FRB with an isotropic luminosity $L_{\rm frb} \gtrsim 10^{42} \, {\rm erg \ s^{-1}}$ can escape the magnetosphere unscathed for a large section of the γp − θB parameter space, and therefore conclude that the generation of FRBs in magnetar magnetosphere passes this test.

    more » « less

    The emission process of Fast Radio Bursts (FRBs) remains unknown. We investigate whether the synchrotron maser emission from relativistic shocks in a magnetar wind can explain the observed FRB properties. We perform particle-in-cell (PIC) simulations of perpendicular shocks in cold pair plasmas, checking our results for consistency among three PIC codes. We confirm that a linearly polarized X-mode wave is self-consistently generated by the shock and propagates back upstream as a precursor wave. We find that at magnetizations σ ≳ 1 (i.e. ratio of Poynting flux to particle energy flux of the pre-shock flow) the shock converts a fraction $f_\xi ^{\prime } \approx 7 \times 10^{-4}/\sigma ^2$ of the total incoming energy into the precursor wave, as measured in the shock frame. The wave spectrum is narrow-band (fractional width ≲1−3), with apparent but not dominant line-like features as many resonances concurrently contribute. The peak frequency in the pre-shock (observer) frame is $\omega ^{\prime \prime }_{\rm peak} \approx 3 \gamma _{\rm s | u} \omega _{\rm p}$, where γs|u is the shock Lorentz factor in the upstream frame and ωp the plasma frequency. At σ ≳ 1, where our estimated $\omega ^{\prime \prime }_{\rm peak}$ differs from previous works, the shock structure presents two solitons separated by a cavity, and the peak frequency corresponds to an eigenmode of the cavity. Our results provide physically grounded inputs for FRB emission models within the magnetar scenario.

    more » « less

    One widely discussed mechanism to produce highly coherent radio emission of fast radio bursts (FRBs) is coherent emission by bunches, either via curvature radiation or inverse Compton scattering (ICS). It has been suggested that the plasma oscillation effect can significantly suppress coherent emission power by bunches. We examine this criticism in this paper. The suppression factor formalism was derived within the context of radio pulsars in which radio waves are in the low-amplitude, linear regime and cannot directly be applied to the large-amplitude, non-linear regime relevant for FRBs. Even if one applies this linear treatment, plasma suppression is not important for two physical reasons. First, for an efficient radiation mechanism, such as ICS, the required plasma density is not high so that a high-density plasma may not exist. Secondly, both bunched coherent mechanisms demand that a large global parallel electric field (E∥) must exist in the emission region in order to continuously inject energy to the bunches to power an FRB. In order to produce typical FRB duration via coherent curvature or ICS radiation, a parallel electric field must be present to balance the acceleration and radiation back reaction. The plasma suppression factor should be modified with the existence of E∥. We show that the correction factor for curvature radiation, fcur, increases with E∥ and becomes 1 when E∥ reaches the radiation-reaction-limited regime. We conclude that the plasma suppression effect can be ignored for realistic FRB emission models invoking bunched coherent radio emission.

    more » « less
  5. null (Ed.)
    ABSTRACT Fast radio bursts (FRBs) are extreme astrophysical phenomena entering the realm of non-linear optics, a field developed in laser physics. A classical non-linear effect is self-modulation. We examine the propagation of FRBs through the circumburst environment using the idealized setup of a monochromatic linearly polarized GHz wave propagating through a uniform plasma slab of density N at distance R from the source. We find that self-modulation occurs if the slab is located within a critical radius Rcrit ∼ 1017(N/102 cm−3)(L/1042 erg s−1) cm, where L is the isotropic equivalent of the FRB luminosity. Self-modulation breaks the burst into pancakes transverse to the radial direction. When R ≲ Rcrit, the transverse size of the pancakes is smaller than the Fresnel scale. The pancakes are strongly diffracted as the burst exits the slab, and interference between the pancakes produces a frequency modulation of the observed intensity with a sub-GHz bandwidth. When R ∼ Rcrit, the transverse size of the pancakes becomes comparable with the Fresnel scale, and the effect of diffraction is weaker. The observed intensity is modulated on a time-scale of 10 µm, which corresponds to the radial width of the pancakes. Our results suggest that self-modulation may cause the temporal and frequency structure observed in FRBs. 
    more » « less