Abstract Nonlinear effects are crucial for the propagation of fast radio bursts (FRBs) near the source. We study the filamentation of FRBs in the relativistic winds of magnetars, which are commonly invoked as the most natural FRB progenitors. As a result of filamentation, the particle number density and radiation intensity develop strong gradients along the direction of the wind magnetic field. A steady state is reached when the plasma pressure balances the ponderomotive force. In such a steady state, particles are confined in periodically spaced thin sheets, and electromagnetic waves propagate between them as in a waveguide. We show the following. (i) The dispersion relation resembles that in the initial homogeneous plasma, but the effective plasma frequency is determined by the separation of the sheets, not directly by the mean particle density. (ii) The contribution of relativistic magnetar winds to the dispersion measure of FRBs could be several orders of magnitude larger than previously thought. The dispersion measure of the wind depends on the properties of individual bursts (e.g., the luminosity) and therefore can change significantly among different bursts from repeating FRBs. (iii) Induced Compton scattering is suppressed because most of the radiation propagates in near-vacuum regions.
more »
« less
Kinetic simulations of the filamentation instability in pair plasmas
ABSTRACT The non-linear interaction between electromagnetic waves and plasmas attracts significant attention in astrophysics because it can affect the propagation of Fast Radio Bursts (FRBs) – luminous millisecond-duration pulses detected at radio frequency. The filamentation instability (FI) – a type of non-linear wave–plasma interaction – is considered to be dominant near FRB sources, and its non-linear development may also affect the inferred dispersion measure of FRBs. In this paper, we carry out fully kinetic particle-in-cell simulations of the FI in unmagnetized pair plasmas. Our simulations show that the FI generates transverse density filaments, and that the electromagnetic wave propagates in near vacuum between them, as in a waveguide. The density filaments keep merging until force balance between the wave ponderomotive force and the plasma pressure gradient is established. We estimate the merging time-scale and discuss the implications of filament merging for FRB observations.
more »
« less
- Award ID(s):
- 2206607
- PAR ID:
- 10408949
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 522
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 2133-2144
- Size(s):
- p. 2133-2144
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT At least some fast radio bursts (FRBs) are produced by magnetars. Even though mounting observational evidence points towards a magnetospheric origin of FRB emission, the question of the location for FRB generation continues to be debated. One argument suggested against the magnetospheric origin of bright FRBs is that the radio waves associated with an FRB may lose most of their energy before escaping the magnetosphere because the cross-section for e± to scatter large-amplitude electromagnetic waves in the presence of a strong magnetic field is much larger than the Thompson cross-section. We have investigated this suggestion and find that FRB radiation travelling through the open field line region of a magnetar’s magnetosphere does not suffer much loss due to two previously ignored factors. First, the plasma in the outer magnetosphere ($$r \gtrsim 10^9$$ cm), where the losses are potentially most severe, is likely to be flowing outwards at a high Lorentz factor γp ≥ 103. Secondly, the angle between the wave vector and the magnetic field vector, θB, in the outer magnetosphere is likely of the order of 0.1 radian or smaller due in part to the intense FRB pulse that tilts open magnetic field lines so that they get aligned with the pulse propagation direction. Both these effects reduce the interaction between the FRB pulse and the plasma substantially. We find that a bright FRB with an isotropic luminosity $$L_{\rm frb} \gtrsim 10^{42} \, {\rm erg \ s^{-1}}$$ can escape the magnetosphere unscathed for a large section of the γp − θB parameter space, and therefore conclude that the generation of FRBs in magnetar magnetosphere passes this test.more » « less
-
ABSTRACT One widely discussed mechanism to produce highly coherent radio emission of fast radio bursts (FRBs) is coherent emission by bunches, either via curvature radiation or inverse Compton scattering (ICS). It has been suggested that the plasma oscillation effect can significantly suppress coherent emission power by bunches. We examine this criticism in this paper. The suppression factor formalism was derived within the context of radio pulsars in which radio waves are in the low-amplitude, linear regime and cannot directly be applied to the large-amplitude, non-linear regime relevant for FRBs. Even if one applies this linear treatment, plasma suppression is not important for two physical reasons. First, for an efficient radiation mechanism, such as ICS, the required plasma density is not high so that a high-density plasma may not exist. Secondly, both bunched coherent mechanisms demand that a large global parallel electric field (E∥) must exist in the emission region in order to continuously inject energy to the bunches to power an FRB. In order to produce typical FRB duration via coherent curvature or ICS radiation, a parallel electric field must be present to balance the acceleration and radiation back reaction. The plasma suppression factor should be modified with the existence of E∥. We show that the correction factor for curvature radiation, fcur, increases with E∥ and becomes 1 when E∥ reaches the radiation-reaction-limited regime. We conclude that the plasma suppression effect can be ignored for realistic FRB emission models invoking bunched coherent radio emission.more » « less
-
Abstract We examine the possibility that fast radio bursts (FRBs) are emitted inside the magnetosphere of a magnetar. On its way out, the radio wave must interact with a low-densitye±plasma in the outer magnetosphere at radiiR= 109–1010cm. In this region, the magnetospheric particles have a huge cross section for scattering the wave. As a result, the wave strongly interacts with the magnetosphere and compresses it, depositing the FRB energy into the compressed field and the scattered radiation. The scattered spectrum extends to theγ-ray band and triggerse±avalanche, further boosting the opacity. These processes choke FRBs, disfavoring scenarios with a radio source confined atR≪ 1010cm. Observed FRBs can be emitted by magnetospheric flare ejecta transporting energy to large radii.more » « less
-
ABSTRACT Fast radio bursts (FRBs) are millisecond-time-scale radio transients, the origins of which are predominantly extragalactic and likely involve highly magnetized compact objects. FRBs undergo multipath propagation, or scattering, from electron density fluctuations on sub-parsec scales in ionized gas along the line of sight. Scattering observations have located plasma structures within FRB host galaxies, probed Galactic and extragalactic turbulence, and constrained FRB redshifts. Scattering also inhibits FRB detection and biases the observed FRB population. We report the detection of scattering times from the repeating FRB 20190520B that vary by up to a factor of 2 or more on minutes to days-long time-scales. In one notable case, the scattering time varied from 7.9 ± 0.4 ms to less than 3.1 ms ($$95{{\ \rm per\ cent}}$$ confidence) over 2.9 min at 1.45 GHz. The scattering times appear to be uncorrelated between bursts or with dispersion and rotation measure variations. Scattering variations are attributable to dynamic, inhomogeneous plasma in the circumsource medium, and analogous variations have been observed from the Crab pulsar. Under such circumstances, the frequency dependence of scattering can deviate from the typical power law used to measure scattering. Similar variations may therefore be detectable from other FRBs, even those with inconspicuous scattering, providing a unique probe of small-scale processes within FRB environments.more » « less