skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Can a Strong Radio Burst Escape the Magnetosphere of a Magnetar?
Abstract We examine the possibility that fast radio bursts (FRBs) are emitted inside the magnetosphere of a magnetar. On its way out, the radio wave must interact with a low-densitye±plasma in the outer magnetosphere at radiiR= 109–1010cm. In this region, the magnetospheric particles have a huge cross section for scattering the wave. As a result, the wave strongly interacts with the magnetosphere and compresses it, depositing the FRB energy into the compressed field and the scattered radiation. The scattered spectrum extends to theγ-ray band and triggerse±avalanche, further boosting the opacity. These processes choke FRBs, disfavoring scenarios with a radio source confined atR≪ 1010cm. Observed FRBs can be emitted by magnetospheric flare ejecta transporting energy to large radii.  more » « less
Award ID(s):
2009453
PAR ID:
10305468
Author(s) / Creator(s):
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
922
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L7
Size(s):
Article No. L7
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We investigate how a fast radio burst (FRB) emitted near a magnetar would propagate through its surrounding dipole magnetosphere at radiir= 107–109cm. First, we show that a GHz burst emitted in the O-mode with luminosityL≫ 1040erg s−1is immediately damped for all propagation directions except a narrow cone along the magnetic axis. Then, we examine bursts in the X-mode. GHz waves propagating near the magnetic equator behave as magnetohydrodynamic (MHD) waves if they haveL≫ 1040erg s−1. The waves develop plasma shocks in each oscillation and dissipate at r 3 × 10 8 L 42 1 / 4 cm. Waves with lowerLor propagation directions closer to the magnetic axis do not obey MHD. Instead, they interact with individual particles and require a kinetic description. The kinetic interaction quickly accelerates particles to Lorentz factors 104–105at the expense of the wave energy, which again results in strong damping of the wave. In either propagation regime, MHD or kinetic, the dipole magnetosphere surrounding the FRB source acts as a pillow absorbing the radio burst and reradiating the absorbed energy in X-rays. These results constrain the origin of observed FRBs. We argue that the observed FRBs avoid damping because they are emitted by relativistic outflows from magnetospheric explosions, so that the GHz waves do not need to propagate through the outer equilibrium magnetosphere surrounding the magnetar. 
    more » « less
  2. ABSTRACT At least some fast radio bursts (FRBs) are produced by magnetars. Even though mounting observational evidence points towards a magnetospheric origin of FRB emission, the question of the location for FRB generation continues to be debated. One argument suggested against the magnetospheric origin of bright FRBs is that the radio waves associated with an FRB may lose most of their energy before escaping the magnetosphere because the cross-section for e± to scatter large-amplitude electromagnetic waves in the presence of a strong magnetic field is much larger than the Thompson cross-section. We have investigated this suggestion and find that FRB radiation travelling through the open field line region of a magnetar’s magnetosphere does not suffer much loss due to two previously ignored factors. First, the plasma in the outer magnetosphere ($$r \gtrsim 10^9$$ cm), where the losses are potentially most severe, is likely to be flowing outwards at a high Lorentz factor γp ≥ 103. Secondly, the angle between the wave vector and the magnetic field vector, θB, in the outer magnetosphere is likely of the order of 0.1 radian or smaller due in part to the intense FRB pulse that tilts open magnetic field lines so that they get aligned with the pulse propagation direction. Both these effects reduce the interaction between the FRB pulse and the plasma substantially. We find that a bright FRB with an isotropic luminosity $$L_{\rm frb} \gtrsim 10^{42} \, {\rm erg \ s^{-1}}$$ can escape the magnetosphere unscathed for a large section of the γp − θB parameter space, and therefore conclude that the generation of FRBs in magnetar magnetosphere passes this test. 
    more » « less
  3. Abstract The most common form of magnetar activity is short X-ray bursts, with durations from milliseconds to seconds, and luminosities ranging from 1036–1043erg s−1. Recently, an X-ray burst from the galactic magnetar SGR 1935+2154 was detected to be coincident with two fast radio burst (FRB) like events from the same source, providing evidence that FRBs may be linked to magnetar bursts. Using fully 3D force-free electrodynamics simulations, we show that such magnetar bursts may be produced by Alfvén waves launched from localized magnetar quakes: a wave packet propagates to the outer magnetosphere, becomes nonlinear, and escapes the magnetosphere, forming an ultra-relativistic ejecta. The ejecta pushes open the magnetospheric field lines, creating current sheets behind it. Magnetic reconnection can happen at these current sheets, leading to plasma energization and X-ray emission. The angular size of the ejecta can be compact, ≲1 sr if the quake launching region is small, ≲0.01 sr at the stellar surface. We discuss implications for the FRBs and the coincident X-ray burst from SGR 1935+2154. 
    more » « less
  4. Abstract The merger of a black hole (BH) and a neutron star (NS) in most cases is expected to leave no material around the remnant BH; therefore, such events are often considered as sources of gravitational waves without electromagnetic counterparts. However, a bright counterpart can emerge if the NS is strongly magnetized, as its external magnetosphere can experience radiative shocks and magnetic reconnection during/after the merger. We use magnetohydrodynamic simulations in the dynamical spacetime of a merging BH–NS binary to investigate its magnetospheric dynamics. We find that compressive waves excited in the magnetosphere develop into monster shocks as they propagate outward. After swallowing the NS, the BH acquires a magnetosphere that quickly evolves into a split-monopole configuration and then undergoes an exponential decay (balding), enabled by magnetic reconnection and also assisted by the ringdown of the remnant BH. This spinning BH drags the split monopole into rotation, forming a transient pulsar-like state. It emits a striped wind if the swallowed magnetic-dipole moment is inclined to the spin axis. We predict two types of transients from this scenario: (1) a fast radio burst emitted by the shocks as they expand to large radii; and (2) an X-ray/γ-ray burst emitted by thee±outflow heated by magnetic dissipation. 
    more » « less
  5. Abstract Luminous interacting supernovae (SNe) are a class of stellar explosions whose progenitors underwent vigorous mass loss in the years prior to core collapse. While the mechanism by which this material is ejected is still debated, obtaining the full density profile of the circumstellar medium (CSM) could reveal more about this process. Here, we present an extensive multiwavelength study of PS1-11aop, a luminous and slowly declining Type IIn SNe discovered by the Pan-STARRS Medium Deep Survey. PS1-11aop had a peakr-band magnitude of −20.5 mag, a total radiated energy >8 × 1050erg, and it exploded near the center of a star-forming galaxy with super-solar metallicity. We obtained multiple detections at the location of PS1-11aop in the radio and X-ray bands between 4 and 10 yr post-explosion, and if due to the supernova (SN), it is one of the most luminous radio SNe identified to date. Taken together, the multiwavelength properties of PS1-11aop are consistent with a CSM density profile with multiple zones. The early optical emission is consistent with the SN blastwave interacting with a dense and confined CSM shell, which contains multiple solar masses of material that was likely ejected in the final <10–100 yr prior to the explosion, (∼0.05−1.0Myr−1at radii of ≲1016cm). The radio observations, on the other hand, are consistent with a sparser environment (≲2 × 10−3Myr−1at radii of ∼0.5–1 × 1017cm)—thus probing the history of the progenitor star prior to its final mass-loss episode. 
    more » « less