Ethyl methanesulfonate (EMS) mutagenesis offers important advantages for improving crops, such as cotton, with limited diversity in elite gene pools. EMS-induced point mutations are less frequently associated with deleterious traits than alleles from wild or exotic germplasm. From 157 mutant lines that have significantly improved fiber properties, we focused on nine mutant lines here. A total of eight populations were developed by crossing mutant lines in different combinations into GA230 (GA2004230) background. Multiple lines in each population were significantly improved for the fiber trait that distinguished the donor parent(s), demonstrating that an elite breeding line (GA230) could be improved for fiber qualities using the mutant lines. Genotypes improved for multiple fiber traits of interest suggesting that allele pyramiding is possible. Compared to midparent values, individual progeny in the population conferred fiber quality improvements of as much as 31.7% (in population O) for micronaire (MIC), 16.1% (in population P) for length, 22.4% (in population K) for strength, 4.1% (in population Q) for uniformity, 45.8% (in population N) for elongation, and 13.9% (in population O) for lint percentage (lint%). While further testing for stability of the phenotype and estimation of yield potential is necessary, mutation breeding shows promise as an approach to reduce the problem of the genetic bottleneck of upland cotton. The populations developed here may also contribute to identifying candidate genes and causal mutations for fiber quality improvement. 
                        more » 
                        « less   
                    
                            
                            A Calmodulin-Like Gene (GbCML7) for Fiber Strength and Yield Improvement Identified by Resequencing Core Accessions of a Pedigree in Gossypium barbadense
                        
                    
    
            Sea Island cotton ( Gossypium barbadense ) is world-renowned for its superior natural fiber. Although fiber strength is one of the most important fiber quality traits, genes contributing to fiber strength are poorly understood. Production of sea island cotton also is inextricably linked to improving its relatively low yield, thus enhancing the importance of joint improvement of both fiber quality and yield. We used genomic variation to uncover the genetic evidence of trait improvement resulting from pedigree breeding of Sea Island cotton. This pedigree was aimed at improving fiber strength and yielded an elite cultivar, XH35. Using a combination of genome-wide association study (GWAS) and selection screens, we detected 82 putative fiber-strength-related genes. Expression analysis confirmed a calmodulin-like gene, GbCML7 , which enhanced fiber strength in a specific haplotype. This gene is a major-effect gene, which interacts with a minor-effect gene, GbTUA3 , facilitating the enhancement of fiber strength in a synergistic fashion. Moreover, GbCML7 participates in the cooperative improvement of fiber strength, fiber length, and fiber uniformity, though a slight compromise exists between the first two of these traits and the latter. Importantly, GbCML7 is shown to boost yield in some backgrounds by increasing multiple yield components to varying degrees, especially boll number. Our work provides valuable genomic evidence and a key genetic factor for the joint improvement of fiber quality and yield in Sea Island cotton. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1951819
- PAR ID:
- 10409070
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- Frontiers in Plant Science
- Volume:
- 12
- ISSN:
- 1664-462X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Cotton (Gossypium hirsutumL.) is the key renewable fibre crop worldwide, yet its yield and fibre quality show high variability due to genotype-specific traits and complex interactions among cultivars, management practices and environmental factors. Modern breeding practices may limit future yield gains due to a narrow founding gene pool. Precision breeding and biotechnological approaches offer potential solutions, contingent on accurate cultivar-specific data. Here we address this need by generating high-quality reference genomes for three modern cotton cultivars (‘UGA230’, ‘UA48’ and ‘CSX8308’) and updating the ‘TM-1’ cotton genetic standard reference. Despite hypothesized genetic uniformity, considerable sequence and structural variation was observed among the four genomes, which overlap with ancient and ongoing genomic introgressions from ‘Pima’ cotton, gene regulatory mechanisms and phenotypic trait divergence. Differentially expressed genes across fibre development correlate with fibre production, potentially contributing to the distinctive fibre quality traits observed in modern cotton cultivars. These genomes and comparative analyses provide a valuable foundation for future genetic endeavours to enhance global cotton yield and sustainability.more » « less
- 
            Abstract Polyploidy complicates transcriptional regulation and increases phenotypic diversity in organisms. The dynamics of genetic regulation of gene expression between coresident subgenomes in polyploids remains to be understood. Here we document the genetic regulation of fiber development in allotetraploid cottonGossypium hirsutumby sequencing 376 genomes and 2,215 time-series transcriptomes. We characterize 1,258 genes comprising 36 genetic modules that control staged fiber development and uncover genetic components governing their partitioned expression relative to subgenomic duplicated genes (homoeologs). Only about 30% of fiber quality-related homoeologs show phenotypically favorable allele aggregation in cultivars, highlighting the potential for subgenome additivity in fiber improvement. We envision a genome-enabled breeding strategy, with particular attention to 48 favorable alleles related to fiber phenotypes that have been subjected to purifying selection during domestication. Our work delineates the dynamics of gene regulation during fiber development and highlights the potential of subgenomic coordination underpinning phenotypes in polyploid plants.more » « less
- 
            Abstract Setaria italica(foxtail millet), a founder crop of East Asian agriculture, is a model plant for C4 photosynthesis and developing approaches to adaptive breeding across multiple climates. Here we established theSetariapan-genome by assembling 110 representative genomes from a worldwide collection. The pan-genome is composed of 73,528 gene families, of which 23.8%, 42.9%, 29.4% and 3.9% are core, soft core, dispensable and private genes, respectively; 202,884 nonredundant structural variants were also detected. The characterization of pan-genomic variants suggests their importance during foxtail millet domestication and improvement, as exemplified by the identification of the yield geneSiGW3, where a 366-bp presence/absence promoter variant accompanies gene expression variation. We developed a graph-based genome and performed large-scale genetic studies for 68 traits across 13 environments, identifying potential genes for millet improvement at different geographic sites. These can be used in marker-assisted breeding, genomic selection and genome editing to accelerate crop improvement under different climatic conditions.more » « less
- 
            Context: Cotton quality is as crucial as cotton quantity. Despite considerable efforts to enhance cotton yield, there has been limited focus on maximizing fiber quality. The temperature experienced from flowering to boll opening becomes the critical factor affecting fiber quality when cotton is cultivated under optimum water and nutrient conditions. This depends on the planting date for a specific location and cultivar. Therefore, fiber quality can be improved by optimizing the planting date for a specific geographic location and cultivar. Objective: The study aims to develop a methodology for optimizing planting dates to maximize fiber quality, taking into account location-specific weather and cultivar details. Methods: A methodology is developed and demonstrated for the cotton belt in the USA. The methodology accounts for temperature, planting intervals, cotton varieties (early, mid, and late-season), and four major fiber quality indicators (fiber length, strength, micronaire, and uniformity). Based on the average of the last 15 years of weather data and different cotton cultivars, spatial maps depicting the best planting dates and associated fiber quality are analyzed for 765 cotton-growing counties in the USA. The study also explores variability in the optimum planting date and fiber quality with climate change in these counties. Results: Results indicate that planting cotton at the optimum planting date can improve all fiber quality features. Fiber length can range from medium (25–29 mm) to long (30–34.5 mm), fiber strength from strong (29–30 g/tex) to very strong (>31 g/tex), micronaire from the discount range (≤3.4 and ≥5.0) to the base range (3.5–3.6 and 4.3–4.9), and uniformity can be high (>85). Applying the methodology with consideration of future climate projections shows a 19 % decline in micronaire - the most affected trait, followed by 8.4 % and 1.6 % decreases in length and uniformity, respectively. In contrast, fiber strength is expected to increase by 5 % in the future. Conclusions: Results indicate that optimizing the planting date with the developed methodology can enhance fiber quality. Additionally, the methodology can predict variations in fiber quality due to future climatic conditions. Significance The developed methodology can be valuable for farmers and growers seeking to enhance fiber quality. It is standard and applicable to any location and cultivar. A similar approach can be adopted for other locations and crops, such as soybeans, rice, and wheat, to optimize their quality.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    