skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Improved Upland Cotton Germplasm for Multiple Fiber Traits Mediated by Transferring and Pyramiding Novel Alleles From Ethyl Methanesulfonate-Generated Mutant Lines Into Elite Genotypes
Ethyl methanesulfonate (EMS) mutagenesis offers important advantages for improving crops, such as cotton, with limited diversity in elite gene pools. EMS-induced point mutations are less frequently associated with deleterious traits than alleles from wild or exotic germplasm. From 157 mutant lines that have significantly improved fiber properties, we focused on nine mutant lines here. A total of eight populations were developed by crossing mutant lines in different combinations into GA230 (GA2004230) background. Multiple lines in each population were significantly improved for the fiber trait that distinguished the donor parent(s), demonstrating that an elite breeding line (GA230) could be improved for fiber qualities using the mutant lines. Genotypes improved for multiple fiber traits of interest suggesting that allele pyramiding is possible. Compared to midparent values, individual progeny in the population conferred fiber quality improvements of as much as 31.7% (in population O) for micronaire (MIC), 16.1% (in population P) for length, 22.4% (in population K) for strength, 4.1% (in population Q) for uniformity, 45.8% (in population N) for elongation, and 13.9% (in population O) for lint percentage (lint%). While further testing for stability of the phenotype and estimation of yield potential is necessary, mutation breeding shows promise as an approach to reduce the problem of the genetic bottleneck of upland cotton. The populations developed here may also contribute to identifying candidate genes and causal mutations for fiber quality improvement.  more » « less
Award ID(s):
1919078
PAR ID:
10357559
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Plant Science
Volume:
13
ISSN:
1664-462X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Alfalfa (Medicago sativaL.) is a perennial flowering plant in the legume family that is widely cultivated as a forage crop for its high yield, forage quality and related agricultural and economic benefits. Alfalfa is a photoperiod sensitive long‐day (LD) plant that can accomplish its vegetative and reproductive phases in a short period of time. However, rapid flowering can compromise forage biomass yield and quality. Here, we attempted to delay flowering in alfalfa using multiplex CRISPR/Cas9‐mediated mutagenesis ofFLOWERING LOCUS Ta1(MsFTa1), a key floral integrator and activator gene. Four guide RNAs (gRNAs) were designed and clustered in a polycistronic tRNA–gRNA system and introduced into alfalfa byAgrobacterium‐mediated transformation. Ninety‐six putative mutant lines were identified by gene sequencing and characterized for delayed flowering time and related desirable agronomic traits. Phenotype assessment of flowering time under LD conditions identified 22 independent mutant lines with delayed flowering compared to the control. Six independentMsfta1lines containing mutations in all four copies ofMsFTa1accumulated significantly higher forage biomass yield, with increases of up to 78% in fresh weight and 76% in dry weight compared to controls. Depending on the harvesting schemes, many of these lines also had reduced lignin, acid detergent fibre (ADF) and neutral detergent fibre (NDF) content and significantly higher crude protein (CP) and mineral contents compared to control plants, especially in the stems. These CRISPR/Cas9‐editedMsfta1mutants could be introduced in alfalfa breeding programmes to generate elite transgene‐free alfalfa cultivars with improved forage biomass yield and quality. 
    more » « less
  2. Abstract Introducing and characterizing variation through mutagenesis plus functional genomics can accelerate resistance breeding as well as our understanding of crop plant immunity. To reveal new germplasm resources for fungal disease resistance breeding in elite durum wheat, we challenged the diverse alleles in a sequenced and cataloged ethyl methanesulfonate mutagenized population of elite tetraploid wheatTriticum turgidumsubsp.durumcv ‘Kronos’ with stripe rust. We screened 2,000 mutant lines and identified sixteen enhanced disease resistance (EDR) lines with persistent resistance to stripe rust over four years of field testing. To find broad-spectrum resistance, we challenged these lines with other major biotrophic and necrotrophic pathogens, including those causing Septoria tritici blotch, tan spot, Fusarium head blight and leaf rust. Enhanced resistance to multiple fungi was found in 13 of 16 EDR lines. Five EDR lines showed spontaneous lesion formation in the absence of pathogens, providing new mutant resources to study plant stress response in the absence of the confounding effects of pathogen infection. We mapped exome capture sequencing data of the EDR lines to a recently released long-read Kronos genome to aid in the identification of causal mutations. We located an EDR resistance locus to an 175 Mb interval on chromosome 1B. Importantly, these phenotypically characterized EDR lines are newly described durum germplasm coupled with improved functional genomics resources that are readily available for both wheat fungal resistance breeding and basic plant immunity research. 
    more » « less
  3. Potassium (K) deficiency is common in cotton (Gossypium hirsutum L.)-growing areas. This study aims to investigate the effects of different rates of foliar K fertilizer application on three cotton varieties: NG 5711 B3XF (V1), PHY 480 W3FE (V2), and FM 1953GLTP (V3). Potassium fertilizer was dissolved in water and was foliar-applied at 34, 50, and 67 kg ha−1. Cotton plant height (CH) and canopy width (CW) were monitored throughout the growing season. The results showed that foliar K fertilizer application significantly impacted the CH and CW in dry years. Although insignificant, the cotton lint yield increased by 15% and 20% with 34 and 50 kg ha−1 in 2020 and by 9% and 7% with 50 and 67 kg ha−1 in 2021, indicating the potential for improved lint yield with foliar K application in rainfed production systems. Similarly, variety V3 had significantly greater lint and seed yields than V1 in 2020. The average lint yield among the varieties was 32%, and the seed yield was 27% greater in 2020 than in 2021. The cotton fiber color grade was significantly greater at 50 kg ha−1 in 2020 and 67 kg ha−1 in 2021. Cotton variety significantly affected color grade, uniformity, staple length, Col, RD, and Col-b contents in 2020 and 2021. The results suggest that foliar K application can enhance cotton production in rainfed production systems. However, more research is required to quantify varietal and foliar K application rates for improved lint yield and quality. 
    more » « less
  4. Sea Island cotton ( Gossypium barbadense ) is world-renowned for its superior natural fiber. Although fiber strength is one of the most important fiber quality traits, genes contributing to fiber strength are poorly understood. Production of sea island cotton also is inextricably linked to improving its relatively low yield, thus enhancing the importance of joint improvement of both fiber quality and yield. We used genomic variation to uncover the genetic evidence of trait improvement resulting from pedigree breeding of Sea Island cotton. This pedigree was aimed at improving fiber strength and yielded an elite cultivar, XH35. Using a combination of genome-wide association study (GWAS) and selection screens, we detected 82 putative fiber-strength-related genes. Expression analysis confirmed a calmodulin-like gene, GbCML7 , which enhanced fiber strength in a specific haplotype. This gene is a major-effect gene, which interacts with a minor-effect gene, GbTUA3 , facilitating the enhancement of fiber strength in a synergistic fashion. Moreover, GbCML7 participates in the cooperative improvement of fiber strength, fiber length, and fiber uniformity, though a slight compromise exists between the first two of these traits and the latter. Importantly, GbCML7 is shown to boost yield in some backgrounds by increasing multiple yield components to varying degrees, especially boll number. Our work provides valuable genomic evidence and a key genetic factor for the joint improvement of fiber quality and yield in Sea Island cotton. 
    more » « less
  5. Abstract Yield improvement in cotton could be accelerated through selection for functional yield drivers such as interception of cumulative photosynthetically active radiation (∑IPAR), radiation use efficiency (RUE), and harvest index (HI). However, information on the extent to which these traits vary in cotton in the southeastern United States is limited. It was hypothesized that functional yield drivers would vary significantly within a diverse cotton collection. This study was conducted in Tifton and Athens, GA, and included a total of 4 site‐years. Lint yield, total biomass production, ∑IPAR, RUE, and HI were all affected by genotype. Biomass was more strongly correlated with RUE than ∑IPAR. Even among the highest yielding genotypes, values for functional yield drivers (biomass and harvest index) differed significantly, indicating that high yields could be achieved by differentially manipulating these underlying traits. However, when considered for all genotypes, only HI exhibited a significant positive correlation with yield. Boll production and intra‐boll yield components were also affected by genotype. When considered across upland genotypes, lint per boll, lint per seed, and lint percent were strongly associated with HI and lint yield, whereas boll mass and seed number per boll were not. We conclude that the genotypes evaluated in the current study achieve high lint production per boll and lint yields by manipulating different yield drivers. However, lint yield was primarily maximized through an increase in HI due to increases in boll production and within‐boll distribution of biomass to fiber, not due to increases in total biomass production or boll size. 
    more » « less