skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Xing Tian and the Perseverance of Anti-China Sentiment Online
Sinophobia, anti-Chinese sentiment, has existed on the Web for a long time. The outbreak of COVID-19 and the extended quarantine has further amplified it. However, we lack a quantitative understanding of the cause of Sinophobia as well as how it evolves over time. In this paper, we conduct a largescale longitudinal measurement of Sinophobia, between 2016 and 2021, on two mainstream and fringe Web communities. By analyzing 8B posts from Reddit and 206M posts from 4chan’s /pol/, we investigate the origins, evolution, and content of Sinophobia. We find that, anti-Chinese content may be evoked by political events not directly related to China, e.g., the U.S. withdrawal from the Paris Agreement. And during the COVID-19 pandemic, daily usage of Sinophobic slurs has significantly increased even with the hate-speech ban policy. We also show that the semantic meaning of the words “China” and “Chinese” are shifting towards Sinophobic slurs with the rise of COVID-19 and remain the same in the pandemic period. We further use topic modeling to show the topics of Sinophobic discussion are pretty diverse and broad. We find that both Web communities share some common Sinophobic topics like ethnics, economics and commerce, weapons and military, foreign relations, etc. However, compared to 4chan’s /pol/, more daily life-related topics including food, game, and stock are found in Reddit. Our finding also reveals that the topics related to COVID-19 and blaming the Chinese government are more prevalent in the pandemic period. To the best of our knowledge, this paper is the longest quantitative measurement of Sinophobia.  more » « less
Award ID(s):
2046590
PAR ID:
10409139
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the International AAAI Conference on Web and Social Media
Volume:
16
ISSN:
2162-3449
Page Range / eLocation ID:
944 to 955
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundThe COVID-19 pandemic has resulted in heightened levels of depression, anxiety, and other mental health issues due to sudden changes in daily life, such as economic stress, social isolation, and educational irregularity. Accurately assessing emotional and behavioral changes in response to the pandemic can be challenging, but it is essential to understand the evolving emotions, themes, and discussions surrounding the impact of COVID-19 on mental health. ObjectiveThis study aims to understand the evolving emotions and themes associated with the impact of COVID-19 on mental health support groups (eg, r/Depression and r/Anxiety) on Reddit (Reddit Inc) during the initial phase and after the peak of the pandemic using natural language processing techniques and statistical methods. MethodsThis study used data from the r/Depression and r/Anxiety Reddit communities, which consisted of posts contributed by 351,409 distinct users over a period spanning from 2019 to 2022. Topic modeling and Word2Vec embedding models were used to identify key terms associated with the targeted themes within the data set. A range of trend and thematic analysis techniques, including time-to-event analysis, heat map analysis, factor analysis, regression analysis, and k-means clustering analysis, were used to analyze the data. ResultsThe time-to-event analysis revealed that the first 28 days following a major event could be considered a critical window for mental health concerns to become more prominent. The theme trend analysis revealed key themes such as economic stress, social stress, suicide, and substance use, with varying trends and impacts in each community. The factor analysis highlighted pandemic-related stress, economic concerns, and social factors as primary themes during the analyzed period. Regression analysis showed that economic stress consistently demonstrated the strongest association with the suicide theme, whereas the substance theme had a notable association in both data sets. Finally, the k-means clustering analysis showed that in r/Depression, the number of posts related to the “depression, anxiety, and medication” cluster decreased after 2020, whereas the “social relationships and friendship” cluster showed a steady decrease. In r/Anxiety, the “general anxiety and feelings of unease” cluster peaked in April 2020 and remained high, whereas the “physical symptoms of anxiety” cluster showed a slight increase. ConclusionsThis study sheds light on the impact of COVID-19 on mental health and the related themes discussed in 2 web-based communities during the pandemic. The results offer valuable insights for developing targeted interventions and policies to support individuals and communities in similar crises. 
    more » « less
  2. null (Ed.)
    As the COVID-19 pandemic is disrupting life worldwide, related online communities are popping up. In particular, two “new” communities, /r/China flu and /r/Coronavirus, emerged on Reddit and have been dedicated to COVID- related discussions from the very beginning of this pandemic. With /r/Coronavirus promoted as the official community on Reddit, it remains an open question how users choose between these two highly-related communities. In this paper, we characterize user trajectories in these two communities from the beginning of COVID-19 to the end of September 2020. We show that new users of /r/China flu and /r/Coronavirus were similar from January to March. After that, their differences steadily increase, both in language distance and membership prediction, as the pandemic continues to unfold. Furthermore, users who started at /r/China flu from January to March were more likely to leave, while those who started in later months tend to remain highly “loyal”. To understand this difference, we develop a movement analysis framework to understand membership changes in these two communities and identify a significant proportion of /r/China flu members (around 50%) that moved to /r/Coronavirus in February. This movement turns out to be highly predictable based on other subreddits that users were previously active in. Our work demonstrates how two highly-related communities emerge and develop their own identity in a crisis, and highlights the important role of existing communities in understanding such an emergence. 
    more » « less
  3. null (Ed.)
    The sudden outbreak of the COVID-19 pandemic has brought drastic changes to people’s daily lives, work, and the surrounding environment. Investigations into these changes are very important for decision makers to implement policies on economic loss assessments and stimulation packages, city reopening, resilience of the environment, and arrangement of medical resources. In order to analyze the impact of COVID-19 on people’s lives, activities, and the natural environment, this paper investigates the spatial and temporal characteristics of Nighttime Light (NTL) radiance and Air Quality Index (AQI) before and during the pandemic in mainland China. The monthly mean NTL radiance, and daily and monthly mean AQI are calculated over mainland China and compared before and during the pandemic. Our results show that the monthly average NTL brightness is much lower during the quarantine period than before. This study categorizes NTL into three classes: residential area, transportation, and public facilities and commercial centers, with NTL radiance ranges of 5–20, 20–40 and greater than 40 (nW· cm − 2 · sr − 1 ), respectively. We found that the Number of Pixels (NOP) with NTL detection increased in the residential area and decreased in the commercial centers for most of the provinces after the shutdown, while transportation and public facilities generally stayed the same. More specifically, we examined these factors in Wuhan, where the first confirmed cases were reported, and where the earliest quarantine measures were taken. Observations and analysis of pixels associated with commercial centers were observed to have lower NTL radiance values, indicating a dimming behavior, while residential area pixels recorded increased levels of brightness after the beginning of the lockdown. The study also discovered a significant decreasing trend in the daily average AQI for mainland China from January to March 2020, with cleaner air in most provinces during February and March, compared to January 2020. In conclusion, the outbreak and spread of COVID-19 has had a crucial impact on people’s daily lives and activity ranges through the increased implementation of lockdown and quarantine policies. On the other hand, the air quality of mainland China has improved with the reduction in non-essential industries and motor vehicle usage. This evidence demonstrates that the Chinese government has executed very stringent quarantine policies to deal with the pandemic. The decisive response to control the spread of COVID-19 provides a reference for other parts of the world. 
    more » « less
  4. The role played by YouTube's recommendation algorithm in unwittingly promoting misinformation and conspiracy theories is not entirely understood. Yet, this can have dire real-world consequences, especially when pseudoscientific content is promoted to users at critical times, such as the COVID-19 pandemic. In this paper, we set out to characterize and detect pseudoscientific misinformation on YouTube. We collect 6.6K videos related to COVID-19, the Flat Earth theory, as well as the anti-vaccination and anti-mask movements. Using crowdsourcing, we annotate them as pseudoscience, legitimate science, or irrelevant and train a deep learning classifier to detect pseudoscientific videos with an accuracy of 0.79.We quantify user exposure to this content on various parts of the platform and how this exposure changes based on the user's watch history. We find that YouTube suggests more pseudoscientific content regarding traditional pseudoscientific topics (e.g., flat earth, anti-vaccination) than for emerging ones (like COVID-19). At the same time, these recommendations are more common on the search results page than on a user's homepage or in the recommendation section when actively watching videos. Finally, we shed light on how a user's watch history substantially affects the type of recommended videos. 
    more » « less
  5. When COVID-19 first emerged in China, there was speculation that the outbreak would trigger public anger and weaken the Chinese regime. By analyzing millions of social media posts from Sina Weibo made between December 2019 and February 2020, we describe the contours of public, online discussions pertaining to COVID-19 in China. We find that discussions of COVID-19 became widespread on January 20, 2020, consisting primarily of personal reflections, opinions, updates, and appeals. We find that the largest bursts of discussion, which contain simultaneous spikes of criticism and support targeting the Chinese government, coincide with the January 23 lockdown of Wuhan and the February 7 death of Dr. Li Wenliang. Criticisms are directed at the government for perceived lack of action, incompetence, and wrongdoing—in particular, censoring information relevant to public welfare. Support is directed at the government for aggressive action and positive outcomes. As the crisis unfolds, the same events are interpreted differently by different people, with those who criticize focusing on the government’s shortcomings and those who praise focusing on the government’s actions. 
    more » « less