skip to main content


Title: Spatiotemporal Patterns of COVID-19 Impact on Human Activities and Environment in Mainland China Using Nighttime Light and Air Quality Data
The sudden outbreak of the COVID-19 pandemic has brought drastic changes to people’s daily lives, work, and the surrounding environment. Investigations into these changes are very important for decision makers to implement policies on economic loss assessments and stimulation packages, city reopening, resilience of the environment, and arrangement of medical resources. In order to analyze the impact of COVID-19 on people’s lives, activities, and the natural environment, this paper investigates the spatial and temporal characteristics of Nighttime Light (NTL) radiance and Air Quality Index (AQI) before and during the pandemic in mainland China. The monthly mean NTL radiance, and daily and monthly mean AQI are calculated over mainland China and compared before and during the pandemic. Our results show that the monthly average NTL brightness is much lower during the quarantine period than before. This study categorizes NTL into three classes: residential area, transportation, and public facilities and commercial centers, with NTL radiance ranges of 5–20, 20–40 and greater than 40 (nW· cm − 2 · sr − 1 ), respectively. We found that the Number of Pixels (NOP) with NTL detection increased in the residential area and decreased in the commercial centers for most of the provinces after the shutdown, while transportation and public facilities generally stayed the same. More specifically, we examined these factors in Wuhan, where the first confirmed cases were reported, and where the earliest quarantine measures were taken. Observations and analysis of pixels associated with commercial centers were observed to have lower NTL radiance values, indicating a dimming behavior, while residential area pixels recorded increased levels of brightness after the beginning of the lockdown. The study also discovered a significant decreasing trend in the daily average AQI for mainland China from January to March 2020, with cleaner air in most provinces during February and March, compared to January 2020. In conclusion, the outbreak and spread of COVID-19 has had a crucial impact on people’s daily lives and activity ranges through the increased implementation of lockdown and quarantine policies. On the other hand, the air quality of mainland China has improved with the reduction in non-essential industries and motor vehicle usage. This evidence demonstrates that the Chinese government has executed very stringent quarantine policies to deal with the pandemic. The decisive response to control the spread of COVID-19 provides a reference for other parts of the world.  more » « less
Award ID(s):
1835507 1841520
NSF-PAR ID:
10208491
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Remote Sensing
Volume:
12
Issue:
10
ISSN:
2072-4292
Page Range / eLocation ID:
1576
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Since its first confirmed case at the end of 2019, COVID-19 has become a global pandemic in three months with more than 1.4 million confirmed cases worldwide, as of early April 2020. Quantifying the changes of pollutant emissions due to COVID-19 and associated governmental control measures is crucial to understand its impacts on economy, air pollution, and society. We used the WRF-GC model and the tropospheric NO2 column observations retrieved by the TROPOMI instrument to derive the top-down NOx emission change estimation between the three periods: P1 (January 1st to January 22nd, 2020), P2 (January 23rd, Wuhan lockdown, to February 9th, 2020), and P3 (February 10th, back-to-work day, to March 12th, 2020). We found that NOx emissions in East China averaged during P2 decreased by 50% compared to those averaged during P1. The NOx emissions averaged during P3 increased by 26% compared to those during P2. Most provinces in East China gradually regained some of their NOx emissions after February 10, the official back-to-work day, but NOx emissions in most provinces have not yet to return to their previous levels in early January. NOx emissions in Wuhan, the first epicenter of COVID-19, had no sign of emission recovering by March 12. A few provinces, such as Zhejiang and Shanxi, have recovered fast, with their averaged NOx emissions during P3 almost back to pre-lockdown levels. 
    more » « less
  2. Abstract The early detection of the coronavirus disease 2019 (COVID-19) outbreak is important to save people’s lives and restart the economy quickly and safely. People’s social behavior, reflected in their mobility data, plays a major role in spreading the disease. Therefore, we used the daily mobility data aggregated at the county level beside COVID-19 statistics and demographic information for short-term forecasting of COVID-19 outbreaks in the United States. The daily data are fed to a deep learning model based on Long Short-Term Memory (LSTM) to predict the accumulated number of COVID-19 cases in the next two weeks. A significant average correlation was achieved ( r =0.83 ( p = 0.005 )) between the model predicted and actual accumulated cases in the interval from August 1, 2020 until January 22, 2021. The model predictions had r > 0.7 for 87% of the counties across the United States. A lower correlation was reported for the counties with total cases of <1000 during the test interval. The average mean absolute error (MAE) was 605.4 and decreased with a decrease in the total number of cases during the testing interval. The model was able to capture the effect of government responses on COVID-19 cases. Also, it was able to capture the effect of age demographics on the COVID-19 spread. It showed that the average daily cases decreased with a decrease in the retiree percentage and increased with an increase in the young percentage. Lessons learned from this study not only can help with managing the COVID-19 pandemic but also can help with early and effective management of possible future pandemics. The code used for this study was made publicly available on https://github.com/Murtadha44/covid-19-spread-risk. 
    more » « less
  3. null (Ed.)
    Abstract The COVID-19 outbreak is a global pandemic declared by the World Health Organization, with rapidly increasing cases in most countries. A wide range of research is urgently needed for understanding the COVID-19 pandemic, such as transmissibility, geographic spreading, risk factors for infections, and economic impacts. Reliable data archive and sharing are essential to jump-start innovative research to combat COVID-19. This research is a collaborative and innovative effort in building such an archive, including the collection of various data resources relevant to COVID-19 research, such as daily cases, social media, population mobility, health facilities, climate, socioeconomic data, research articles, policy and regulation, and global news. Due to the heterogeneity between data sources, our effort also includes processing and integrating different datasets based on GIS (Geographic Information System) base maps to make them relatable and comparable. To keep the data files permanent, we published all open data to the Harvard Dataverse ( https://dataverse.harvard.edu/dataverse/2019ncov ), an online data management and sharing platform with a permanent Digital Object Identifier number for each dataset. Finally, preliminary studies are conducted based on the shared COVID-19 datasets and revealed different spatial transmission patterns among mainland China, Italy, and the United States. 
    more » « less
  4. Shaw, Shih-Lung ; Sui, Daniel (Ed.)
    When the World Health Organization (WHO) announced the pandemic of COVID-19, people around the globe scattered to stores for groceries, supplies, and other miscellaneous items in preparation for quarantine. The dynamics of retail visits changed dramatically due to the pandemic outbreak. The study intends to analyze how the store visit patterns have changed due to the lockdown policies during the COVID-19 pandemic. Using mobile phone location data, we build a time-aware Huff model to estimate and compare the visiting probability of different brands of stores over different time periods. We are able to identify certain retail and grocery stores that have more or fewer visits due to the pandemic outbreak, and we detect whether there are any trends in visiting certain retail establishments (e.g., department stores, grocery stores, fast-food restaurants, and cafes) and how the visiting patterns have adjusted with lockdowns. We also make comparisons among brands across three highly populated U.S. cities to identify potential regional variability. It has been found that people in large metropolitan areas with a well-developed transit system tend to show less sensitivity to long-distance visits. In addition, Target, which is a department store, is found to be more negatively affected by longer-distance trips than other grocery stores after the lockdown. The findings can be further applied to support policymaking related to public health, urban planning, transportation, and business in post-pandemic cities. 
    more » « less
  5. Risk perception and risk averting behaviors of public agencies in the emergence and spread of COVID-19 can be retrieved through online social media (Twitter), and such interactions can be echoed in other information outlets. This study collected time-sensitive online social media data and analyzed patterns of health risk communication of public health and emergency agencies in the emergence and spread of novel coronavirus using data-driven methods. The major focus is toward understanding how policy-making agencies communicate risk and response information through social media during a pandemic and influence community response—ie, timing of lockdown, timing of reopening, etc.—and disease outbreak indicators—ie, number of confirmed cases and number of deaths. Twitter data of six major public organizations (1,000-4,500 tweets per organization) are collected from February 21, 2020 to June 6, 2020. Several machine learning algorithms, including dynamic topic model and sentiment analysis, are applied over time to identify the topic dynamics over the specific timeline of the pandemic. Organizations emphasized on various topics—eg, importance of wearing face mask, home quarantine, understanding the symptoms, social distancing and contact tracing, emerging community transmission, lack of personal protective equipment, COVID-19 testing and medical supplies, effect of tobacco, pandemic stress management, increasing hospitalization rate, upcoming hurricane season, use of convalescent plasma for COVID-19 treatment, maintaining hygiene, and the role of healthcare podcast in different timeline. The findings can benefit emergency management, policymakers, and public health agencies to identify targeted information dissemination policies for public with diverse needs based on how local, federal, and international agencies reacted to COVID-19. 
    more » « less