skip to main content


Title: Hierarchical Composite Self‐Sorted Supramolecular Gel Noodles
Abstract

Multicomponent supramolecular systems can be used to achieve different properties and new behaviors compared to their corresponding single component systems. Here, a two‐component system is used, showing that a non‐gelling component modifies the assembly of the gelling component, allowing access to co‐assembled structures that cannot be formed from the gelling component alone. The systems are characterized across multiple length scales, from the molecular level by NMR and CD spectroscopy to the microstructure level by SANS and finally to the material level using nanoindentation and rheology. By exploiting the enhanced mechanical properties achieved through addition of the second component, multicomponent noodles are formed with superior mechanical properties to those formed by the single‐component system. Furthermore, the non‐gelling component can be triggered to crystallize within the multicomponent noodles, allowing the preparation of new types of hierarchical composite noodles.

 
more » « less
NSF-PAR ID:
10409252
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
17
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Changes in aerosol chemical mixtures modify cloud condensation nuclei (CCN)activity. Previous studies have developed CCN models and validated changesin external and internal mixing state with ambient field data. Here, wedevelop an experimental method to test and validate the CCN activation ofknown aerosol chemical composition with multicomponent mixtures and varyingmixing states. CCN activation curves consisting of one or more activationpoints are presented. Specifically, simplified two-component systems ofvarying hygroscopicity were generated under internal, external, andtransitional mixing conditions. κ-Köhler theory predictions werecalculated for different organic and inorganic mixtures and compared toexperimentally derived kappa values and respective mixing states. This workemploys novel experimental methods to provide information on the shifts inCCN activation data due to external to internal particle mixing fromcontrolled laboratory sources. Results show that activation curvesconsisting of single and double activation points are consistent withinternal and external mixtures, respectively. In addition, the height of theplateau at the activation points is reflective of the externally mixedconcentration in the mixture. The presence of a plateau indicates that CCNactivation curves consisting of multiple inflection points are externallymixed aerosols of varying water-uptake properties. The plateau disappearswhen mixing is promoted in the flow tube. At the end of the flow tubeexperiment, the aerosols are internally mixed and the CCN activated fractiondata can be fit with a single-sigmoid curve. The technique to mimicexternally to internally mixed aerosol is applied to non-hygroscopiccarbonaceous aerosol with organic and inorganic components. To ourknowledge, this work is the first to show controlled CCN activation of mixednon-hygroscopic soot with hygroscopic material as the aerosol populationtransitions from externally to internally mixed states in laboratoryconditions. Results confirm that CCN activation analysis methods used hereand in ambient data sets are robust and may be used to infer the mixingstate of complex aerosol compositions of unknown origin.

     
    more » « less
  2. Abstract

    Blends of nanoparticles, polymers, and small molecules can self‐assemble into optical, magnetic, and electronic devices with structure‐dependent properties. However, the relationship between a multicomponent nanocomposite's formulation and its assembled structure is complex and cannot be predicted by theory. The blends can be strongly influenced by processing conditions, which can introduce non‐equilibrium states. Currently, nanocomposite devices are designed through cycles of experimental trial and error. Machine learning (ML) methods are a compelling alternative because they can use existing datasets to map high‐dimensional spaces. These methods do not rely on known relationships between parameters, so they are suited to complex systems without a solid theoretical foundation. Here, a dataset of 595 microscopy images of nanocomposite thin films is used to train a series of ML models. Correlations between the input and output parameters are examined, providing new insights into the system. Finally, the most successful ML model is used to predict the structures of new nanocomposite compositions. The results confirm that ML techniques can be used to improve the efficiency of nanocomposite device design. More broadly, the current study suggests some of the advantages and challenges associated with applying ML to complex systems.

     
    more » « less
  3. Abstract

    Peptide co-assembly is attractive for creating biomaterials with new forms and functions. Emergence of these properties depends on the peptide content of the final assembled structure, which is difficult to predict in multicomponent systems. Here using experiments and simulations we show that charge governs content by affecting propensity for self- and co-association in binary CATCH(+/−) peptide systems. Equimolar mixtures of CATCH(2+/2−), CATCH(4+/4−), and CATCH(6+/6−) formed two-component β-sheets. Solid-state NMR suggested the cationic peptide predominated in the final assemblies. The cationic-to-anionic peptide ratio decreased with increasing charge. CATCH(2+) formed β-sheets when alone, whereas the other peptides remained unassembled. Fibrillization rate increased with peptide charge. The zwitterionic CATCH parent peptide, “Q11”, assembled slowly and only at decreased simulation temperature. These results demonstrate that increasing charge draws complementary peptides together faster, favoring co-assembly, while like-charged molecules repel. We foresee these insights enabling development of co-assembled peptide biomaterials with defined content and predictable properties.

     
    more » « less
  4. null (Ed.)
    The studies of transcritical and supercritical flow have attracted much interest in the past 30 years. However, most of them mainly focus on the single-component system, whose critical point is constant. We use the vapor-liquid equilibrium (VLE) theory to capture the thermodynamic properties of the mixture and investigate transcritical flows (i.e., supercritical CO2 oxy-combustion systems). In sCO2 oxy-combustion systems, due to the presence of water from the previous cycles, the mixture critical point increases significantly, such that the phase separation could occur in both the compressor and combustor. However, the VLE solver increases the computation cost of fluid simulation significantly, which limited the size of simulations we can conduct. Naturally, tabulation methods can be used to store the VLE solutions to avoids redundant computation. However, the size of the VLE table increases exponentially with respect to the number of components. When the number of species components is greater than three, the size of the VLE table far exceeds the RAM’s limit in today’s standard computers. In this research, an online tabulation method based on In Situ Adaptive Tabulation (ISAT) is developed to accelerate the computation of multicomponent fluids based on VLE theory. Accuracy and efficiency are analyzed and discussed. The CFD solver used in this research is based on the Pressure-Implicit with Splitting of Operators (PISO) method. Peng-Robinson equation of state (EOS) is used in the calculations of phase equilibrium. 
    more » « less
  5. null (Ed.)
    ABSTRACT The joint detection of the gravitational wave GW170817, of the short γ-ray burst GRB170817A and of the kilonova AT2017gfo, generated by the the binary neutron star (NS) merger observed on 2017 August 17, is a milestone in multimessenger astronomy and provides new constraints on the NS equation of state. We perform Bayesian inference and model selection on AT2017gfo using semi-analytical, multicomponents models that also account for non-spherical ejecta. Observational data favour anisotropic geometries to spherically symmetric profiles, with a log-Bayes’ factor of ∼104, and favour multicomponent models against single-component ones. The best-fitting model is an anisotropic three-component composed of dynamical ejecta plus neutrino and viscous winds. Using the dynamical ejecta parameters inferred from the best-fitting model and numerical–relativity relations connecting the ejecta properties to the binary properties, we constrain the binary mass ratio to q < 1.54 and the reduced tidal parameter to $120\lt \tilde{\Lambda }\lt 1110$. Finally, we combine the predictions from AT2017gfo with those from GW170817, constraining the radius of a NS of 1.4 M⊙ to 12.2 ± 0.5 km (1σ level). This prediction could be further strengthened by improving kilonova models with numerical-relativity information. 
    more » « less