This paper introduces a new identification‐ and singularity‐robust conditional quasi‐likelihood ratio (SR‐CQLR) test and a new identification‐ and singularity‐robust Anderson and Rubin (1949) (SR‐AR) test for linear and nonlinear moment condition models. Both tests are very fast to compute. The paper shows that the tests have correct asymptotic size and are asymptotically similar (in a uniform sense) under very weak conditions. For example, in i.i.d. scenarios, all that is required is that the moment functions and their derivatives have 2 + γ bounded moments for some γ > 0. No conditions are placed on the expected Jacobian of the moment functions, on the eigenvalues of the variance matrix of the moment functions, or on the eigenvalues of the expected outer product of the (vectorized) orthogonalized sample Jacobian of the moment functions. The SR‐CQLR test is shown to be asymptotically efficient in a GMM sense under strong and semi‐strong identification (for all k ≥ p , where k and p are the numbers of moment conditions and parameters, respectively). The SR‐CQLR test reduces asymptotically to Moreira's CLR test when p = 1 in the homoskedastic linear IV model. The same is true for p ≥ 2 in most, but not all, identification scenarios. We also introduce versions of the SR‐CQLR and SR‐AR tests for subvector hypotheses and show that they have correct asymptotic size under the assumption that the parameters not under test are strongly identified. The subvector SR‐CQLR test is shown to be asymptotically efficient in a GMM sense under strong and semi‐strong identification.
more »
« less
Optimal Decision Rules for Weak GMM
This paper studies optimal decision rules, including estimators and tests, for weakly identified GMM models. We derive the limit experiment for weakly identified GMM, and propose a theoretically‐motivated class of priors which give rise to quasi‐Bayes decision rules as a limiting case. Together with results in the previous literature, this establishes desirable properties for the quasi‐Bayes approach regardless of model identification status, and we recommend quasi‐Bayes for settings where identification is a concern. We further propose weighted average power‐optimal identification‐robust frequentist tests and confidence sets, and prove a Bernstein‐von Mises‐type result for the quasi‐Bayes posterior under weak identification.
more »
« less
- Award ID(s):
- 1654234
- PAR ID:
- 10409388
- Date Published:
- Journal Name:
- Econometrica
- Volume:
- 90
- Issue:
- 2
- ISSN:
- 0012-9682
- Page Range / eLocation ID:
- 715 to 748
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper establishes the asymptotic consistency of theloss‐calibrated variational Bayes(LCVB) method. LCVB is a method for approximately computing Bayesian posterior approximations in a “loss aware” manner. This methodology is also highly relevant in general data‐driven decision‐making contexts. Here, we establish the asymptotic consistency of both the loss‐ calibrated approximate posterior and the resulting decision rules. We also establish the asymptotic consistency of decision rules obtained from a “naive” two‐stage procedure that first computes a standard variational Bayes approximation and then uses this in the decision‐making procedure.more » « less
-
In many applications, one can define a large set of features to support the classification task at hand. At test time, however, these become prohibitively expensive to evaluate, and only a small subset of features is used, often selected for their information-theoretic value. For threshold-based, Naive Bayes classifiers, recent work has suggested selecting features that maximize the expected robustness of the classifier, that is, the expected probability it maintains its decision after seeing more features. We propose the first algorithm to compute this expected same-decision probability for general Bayesian network classifiers, based on compiling the network into a tractable circuit representation. Moreover, we develop a search algorithm for optimal feature selection that utilizes efficient incremental circuit modifications. Experiments on Naive Bayes, as well as more general networks, show the efficacy and distinct behavior of this decision-making approach.more » « less
-
Abstract We propose a new procedure for inference on optimal treatment regimes in the model‐free setting, which does not require to specify an outcome regression model. Existing model‐free estimators for optimal treatment regimes are usually not suitable for the purpose of inference, because they either have nonstandard asymptotic distributions or do not necessarily guarantee consistent estimation of the parameter indexing the Bayes rule due to the use of surrogate loss. We first study a smoothed robust estimator that directly targets the parameter corresponding to the Bayes decision rule for optimal treatment regimes estimation. This estimator is shown to have an asymptotic normal distribution. Furthermore, we verify that a resampling procedure provides asymptotically accurate inference for both the parameter indexing the optimal treatment regime and the optimal value function. A new algorithm is developed to calculate the proposed estimator with substantially improved speed and stability. Numerical results demonstrate the satisfactory performance of the new methods.more » « less
-
Abstract We consider a decision maker who faces a binary treatment choice when their welfare is only partially identified from data. We contribute to the literature by anchoring our finite-sample analysis on mean square regret, a decision criterion advocated by Kitagawa et al. in (2022) Treatment Choice with Nonlinear Regret . We find that optimal rules are always fractional, irrespective of the width of the identified set and precision of its estimate. The optimal treatment fraction is a simple logistic transformation of the commonly used t-statistic multiplied by a factor calculated by a simple constrained optimization. This treatment fraction gets closer to 0.5 as the width of the identified set becomes wider, implying the decision maker becomes more cautious against the adversarial Nature.more » « less
An official website of the United States government

