- Award ID(s):
- 2102462
- NSF-PAR ID:
- 10409397
- Date Published:
- Journal Name:
- Green Chemistry
- Volume:
- 25
- Issue:
- 2
- ISSN:
- 1463-9262
- Page Range / eLocation ID:
- 746 to 754
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The rational development of catalytic reactions involving cooperative behavior between two catalytic reactive sites represents a frontier area of research from which novel reactivity and selectivity patterns emerge. Within this context, this Feature highlights the development of a cooperative system involving transition metal Lewis acid/base pairs. Bimetallic systems consisting of copper carbene Lewis acids and metal carbonyl anion Lewis bases, (NHC)Cu–[M CO ], are easily synthesized from readily available organometallic building blocks (NHC = N-heterocyclic carbene; [M CO ] − = metal carbonyl anion, e.g. [FeCp(CO) 2 ] − , [Mn(CO) 5 ] − , etc. ). Stoichiometric reactivity studies indicate that the dative Cu←M bonds in these systems are labile towards heterolysis under mild conditions, thus providing in situ access both to polar metal–metal bonds and to “frustrated” transition metal Lewis acid/base pairs as dictated by reaction conditions. Catalytic transformations ranging from C–C and C–B coupling reactions to hydrogenation and other reductions have been developed from both manifolds: bimetallic catalysis involving (a) binuclear intermediates engaging in cooperative bond activation and formation, and (b) orthogonal mononuclear intermediates that operate in either tandem or co-dependent manners. Preliminary indications point to the future emergence of novel reactivity and selectivity patterns as these new motifs undergo continued development, and additionally demonstrate that the relative matching of two reactive sites provides a method for controlling catalytic behavior. Collectively, these results highlight the fundamental importance of exploring unconventional catalytic paradigms.more » « less
-
Abstract Transition metal‐catalyzed, non‐enzymatic nitrene transfer (NT) reactions to selectively transform C−H and C=C bonds to new C−N bonds are a powerful strategy to streamline the preparation of valuable amine building blocks. However, many catalysts for these reactions use environmentally unfriendly solvents that include dichloromethane, chloroform, 1,2‐dichloroethane and benzene. We developed a high‐throughput experimentation (HTE) protocol for heterogeneous NT reaction mixtures to enable rapid screening of a broad range of solvents for this chemistry. Coupled with the American Chemical Society Pharmaceutical Roundtable (ACSPR) solvent tool, we identified several attractive replacements for chlorinated solvents. Selected catalysts for NT were compared and contrasted using our HTE protocol, including silver supported by
N ‐dentate ligands, dinuclear Rh complexes and Fe/Mn phthalocyanine catalysts. -
Abstract Although many monometallic active sites have been installed in metal–organic frameworks (MOFs) for catalytic reactions, there are no effective strategies to generate bimetallic catalysts in MOFs. Here we report the synthesis of a robust, efficient, and reusable MOF catalyst, MOF‐NiH, by adaptively generating and stabilizing dinickel active sites using the bipyridine groups in MOF‐253 with the formula of Al(OH)(2,2′‐bipyridine‐5,5′‐dicarboxylate) for
Z ‐selective semihydrogenation of alkynes and selective hydrogenation of C=C bonds in α,β‐unsaturated aldehydes and ketones. Spectroscopic studies established the dinickel complex (bpy⋅−)NiII(μ 2‐H)2NiII(bpy⋅−) as the active catalyst. MOF‐NiH efficiently catalyzed selective hydrogenation reactions with turnover numbers of up to 192 and could be used in five cycles of hydrogenation reactions without catalyst leaching or significant decrease of catalytic activities. The present work uncovers a synthetic strategy toward solution‐inaccessible Earth‐abundant bimetallic MOF catalysts for sustainable catalysis. -
Abstract Although many monometallic active sites have been installed in metal–organic frameworks (MOFs) for catalytic reactions, there are no effective strategies to generate bimetallic catalysts in MOFs. Here we report the synthesis of a robust, efficient, and reusable MOF catalyst, MOF‐NiH, by adaptively generating and stabilizing dinickel active sites using the bipyridine groups in MOF‐253 with the formula of Al(OH)(2,2′‐bipyridine‐5,5′‐dicarboxylate) for
Z ‐selective semihydrogenation of alkynes and selective hydrogenation of C=C bonds in α,β‐unsaturated aldehydes and ketones. Spectroscopic studies established the dinickel complex (bpy⋅−)NiII(μ 2‐H)2NiII(bpy⋅−) as the active catalyst. MOF‐NiH efficiently catalyzed selective hydrogenation reactions with turnover numbers of up to 192 and could be used in five cycles of hydrogenation reactions without catalyst leaching or significant decrease of catalytic activities. The present work uncovers a synthetic strategy toward solution‐inaccessible Earth‐abundant bimetallic MOF catalysts for sustainable catalysis. -
A mechanistic investigation on the ethanol self-condensation reaction (Guerbet reaction) catalyzed by a bis(pyridylimino)isoindolate Ru( ii ) catalyst was performed using a specifically designed continuously-stirred tank reactor (CSTR). Leveraging vapor–liquid equilibrium, the homogeneous catalyst was maintained in the reactor at a constant concentration by dissolving it in a non-volatile solvent while volatile substrates were fed continuously. The activity of the catalyst was monitored by analyzing the vapor exiting the reactor (reagents and products) using an in-line gas chromatograph. The formation of C 6 products demonstrates the catalyst's reactivity towards butanol, and the detection of solely saturated products implies that hydrogenation is fast under the reaction conditions. These observations led us to perform a detailed study of the hydrogenation step that provided evidence for a hydrogen-transfer pathway. The corresponding reaction mechanism for the Guerbet reaction was established.more » « less