skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-Efficient Machine Learning Potentials from Transfer Learning of Periodic Correlated Electronic Structure Methods: Liquid Water at AFQMC, CCSD, and CCSD(T) Accuracy
Award ID(s):
2154291
PAR ID:
10409434
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Chemical Theory and Computation
ISSN:
1549-9618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. We calculate bandgaps of 12 inorganic semiconductors and insulators composed of atoms from the first three rows of the Periodic Table using periodic equation-of-motion coupled-cluster theory with single and double excitations (EOM-CCSD). Our calculations are performed with atom-centered triple-zeta basis sets and up to 64 k-points in the Brillouin zone. We analyze the convergence behavior with respect to the number of orbitals and number of k-points sampled using composite corrections and extrapolations to produce our final values. When accounting for electron–phonon corrections to experimental bandgaps, we find that EOM-CCSD has a mean signed error of −0.12 eV and a mean absolute error of 0.42 eV; the largest outliers are C (error of −0.93 eV), BP (−1.00 eV), and LiH (+0.78 eV). Surprisingly, we find that the more affordable partitioned EOM-MP2 theory performs as well as EOM-CCSD. 
    more » « less
  3. Obtaining sub-chemical accuracy (1 kJ mol−1) for reaction energies of medium-sized gas-phase molecules is a longstanding challenge in the field of thermochemical modeling. The perturbative triples correction to coupled-cluster single double triple [CCSD(T)] constitutes an important component of all high-accuracy composite model chemistries that obtain this accuracy but can be a roadblock in the calculation of medium to large systems due to its O(N7) scaling, particularly in HEAT-like model chemistries that eschew separation of core and valence correlation. This study extends the work of Lesiuk [J. Chem. Phys. 156, 064103 (2022)] with new approximate methods and assesses the accuracy of five different approximations of (T) in the context of a subset of molecules selected from the W4-17 dataset. It is demonstrated that all of these approximate methods can achieve sub-0.1 kJ mol−1 accuracy with respect to canonical, density-fitted (T) contributions with a modest number of projectors. The approximation labeled Z̃T appears to offer the best trade-off between cost and accuracy and shows significant promise in an order-of-magnitude reduction in the computational cost of the CCSD(T) component of high-accuracy model chemistries. 
    more » « less