skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The daf-7(e1372) mutation rescues dauer formation defects seen in C. elegans unc-33 mutants
Collapsin response mediator protein-2 (CRMP2) in humans, UNC-33 in C. elegans , is a molecule that mediates axonal outgrowth and stability. UNC-33/CRMP2 has been hypothesized as a potential drug target for treating Alzheimer’s and other neurodegenerative diseases, which can often be attributed in part to aging. In aging, CRMP2 becomes hyperphosphorylated, which decreases the protein’s functionality, destabilizes the cellular skeleton, and contributes to neurodegeneration. In C. elegans, aging can be slowed by entering dauer diapause; a non-aging developmental stage turned on when the DAF-7/TGFβ signaling pathway is silenced in response to environmental stressors. In our laboratory, we discovered that unc-33 mutants are unable to form dauers in response to environmental stressors, but the mechanism behind this is still unknown. Here, we present a study that investigates whether a mutation in the daf-7 gene which leads to a temperature sensitive constitutive dauer phenotype can rescue phenotypes characteristic of unc-33 mutants. To this end, we created unc-33 ; daf-7 double mutants and quantified proper dauer formation after exposure to unfavorable environmental conditions. In addition, we tested how the introduction of the daf-7 mutation would affect the locomotion of the double mutants on an agar plate and a liquid medium. Furthermore, we examined axonal elongation of the double mutants using a transgene, juIs76, which expresses GFP in GABAergic motor neurons. Our analysis of unc-33; daf-7 double mutants showed that introducing the daf-7 mutation into an unc-33 mutant rescued dauer formation. However, further studies revealed that the unc-33; daf-7 double mutants had defects in axonal outgrowth of their D-type motor neuron which had been previously seen in unc-33 single mutants and impaired locomotion. Based on these results, we concluded that unc-33 mutants might have a problem suppressing DAF-7 signaling under unfavorable environmental conditions, leading to the activation of reproductive programs and the development of adults instead of dauers.  more » « less
Award ID(s):
1748523
PAR ID:
10409453
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Physiology
Volume:
14
ISSN:
1664-042X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Environmental factors such as prenatal stress are hypothesized to contribute to the development of schizophrenia. Lee and colleagues determined rats exposed to prenatal stress exhibited decreased levels of only one protein, DPYSL2, in their prefrontal cortex and hippocampus. DYPSL2, a protein seen to be inactivated in schizophrenic patients, is important for neuronal development. The C. elegans homolog of DPYSL2, UNC-33, is also found to be critical for axonal outgrowth and synapse formation. Herein, we study the effects of environmental stressors such as increasing temperatures and pathogens on the expression of GFP driven by the unc-33 promoter. Results indicate that neuronal GFP expression was lower in C. elegans exposed to these prenatal stressors, making this the first report denoting an environmental regulation of the unc-33 promoter. This study provides insight into unc-33 and the regulation of its expression in relation to temperature and infection. 
    more » « less
  2. Herein, we tested the ability of UNC-33L to rescue dauer formation, lifespan, and locomotion defects of unc-33(mn407) mutants. Results show that the presence of UNC-33L does not rescue the defective dauer phenotype in unc-33(mn407) mutants. However, UNC-33L significantly rescued premature death and uncoordinated locomotion in young unc-33(mn407) adults. The degree of UNC-33L-mediated rescue was less noticeable as the nematodes aged, denoting that both age and the presence of UNC-33L interact in the production of the phenotypes. 
    more » « less
  3. Cellular fates are determined by genes interacting across large, complex biological networks. A critical question is how to identify causal relationships spanning distinct signaling pathways and underlying organismal phenotypes. Here, we address this question by constructing a Boolean model of a well-studied developmental network and analyzing information flows through the system. Depending on environmental signals Caenorhabditis elegans develop normally to sexual maturity or enter a reproductively delayed, developmentally quiescent ‘dauer’ state, progressing to maturity when the environment changes. The developmental network that starts with environmental signal and ends in the dauer/no dauer fate involves genes across 4 signaling pathways including cyclic GMP, Insulin/IGF-1, TGF- β and steroid hormone synthesis. We identified three stable motifs leading to normal development, each composed of genes interacting across the Insulin/IGF-1, TGF- β and steroid hormone synthesis pathways. Three genes known to influence dauer fate, daf-2 , daf-7 and hsf-1 , acted as driver nodes in the system. Using causal logic analysis, we identified a five gene cyclic subgraph integrating the information flow from environmental signal to dauer fate. Perturbation analysis showed that a multifactorial insulin profile determined the stable motifs the system entered and interacted with daf-12 as the switchpoint driving the dauer/no dauer fate. Our results show that complex organismal systems can be distilled into abstract representations that permit full characterization of the causal relationships driving developmental fates. Analyzing organismal systems from this perspective of logic and function has important implications for studies examining the evolution and conservation of signaling pathways. 
    more » « less
  4. Murphy, Coleen T. (Ed.)
    Animals can adapt to dynamic environmental conditions by modulating their developmental programs. Understanding the genetic architecture and molecular mechanisms underlying developmental plasticity in response to changing environments is an important and emerging area of research. Here, we show a novel role of cAMP response element binding protein (CREB)-encoding crh-1 gene in developmental polyphenism of C . elegans . Under conditions that promote normal development in wild-type animals, crh-1 mutants inappropriately form transient pre-dauer (L2d) larvae and express the L2d marker gene. L2d formation in crh-1 mutants is specifically induced by the ascaroside pheromone ascr#5 (asc-ωC3; C3), and crh-1 functions autonomously in the ascr#5-sensing ASI neurons to inhibit L2d formation. Moreover, we find that CRH-1 directly binds upstream of the daf-7 TGF-β locus and promotes its expression in the ASI neurons. Taken together, these results provide new insight into how animals alter their developmental programs in response to environmental changes. 
    more » « less
  5. FOXO transcription factors regulate development, longevity, and stress-resistance across species. The C. elegans FOXO ortholog, daf-16, has three major isoforms with distinct promoters and N-termini. Different combinations of isoforms regulate different processes. Adverse environments can induce dauer diapause after the second larval molt. During dauer, daf-16 blocks specification of vulval precursor cells, including EGFR/Ras-mediated 1˚ fate specification and LIN-12/Notch-mediated 2˚ fate specification. Using isoform-specific mutants, we find that daf-16a and daf-16f are functionally redundant for the block to the expression of 1˚ fate markers. In contrast, all three isoforms contribute to blocking the expression of 2˚ fate markers. 
    more » « less