skip to main content


Title: Refractory Dissolved Organic Matter has Similar Chemical Characteristics but Different Radiocarbon Signatures With Depth in the Marine Water Column
Abstract

The >5,000‐year radiocarbon age (14C‐age) of much of the 630 ± 30 Pg C oceanic dissolved organic carbon (DOC) reservoir remains an enigma in the marine carbon cycle. The fact that DOC is significantly older than dissolved inorganic carbon at every depth in the ocean forms the basis of our current framing of the marine DOC cycle, where some component persists over multiple cycles of ocean mixing. As a result,14C‐depleted, aged DOC is hypothesized to be present as a uniform reservoir with a constant14C signature and concentration throughout the water column. However, key requirements of this model, including direct observations of DOC with similar14C signatures in the surface and deep ocean, have never been met. Despite decades of research, the distribution of Δ14C values in marine DOC remains a mystery. Here, we applied a thermal fractionation method to compare operationally defined refractory DOC (RDOC) from different depths in the North Pacific Ocean. We found that RDOC shares chemical characteristics (as recorded by OC bond strength) throughout the water column but does not share the same14C signature. Our results support one part of the current paradigm—that RDOC is comprised of structurally related components throughout the ocean that form a “background” reservoir. However, in contrast to the current paradigm, our results are consistent with a vertical concentration gradient and a vertical and inter‐ocean Δ14C gradient for RDOC. The observed Δ14C gradient is compatible with the potential addition of pre‐aged DOC to the upper ocean.

 
more » « less
NSF-PAR ID:
10409476
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Global Biogeochemical Cycles
Volume:
37
Issue:
4
ISSN:
0886-6236
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Glacial runoff exports large amounts of carbon (C) to the oceans, but major uncertainty remains regarding sources, seasonality, and magnitude. We apportioned C exported by five rivers from glacial and periglacial sources in northwest Greenland by monitoring discharge, water sources (δ18O), concentration and composition of dissolved organic carbon (DOC), and ages (14C) of DOC and particulate organic C over three summers (2010–2012). We found that particulate organic C (F = 1.0366–0.2506) was generally older than DOC in glacial sourced rivers and likely sourced from the physical erosion of aged C pools. Most exported DOC showed strong seasonal variations in sources and discharge. In summer, mean DOC ages ranged from modern to 4,750 cal years BP (F = 1.0022–0.6291); however, the annual C flux from glacially sourced rivers was dominated by young, plant‐derived DOC (F = 0.9667–1.002) exported during the spring freshet. The most aged DOC (F = 0.6891–0.8297) was exported in middle to late summer at lower concentrations and was glacial in origin. Scaled to the whole of Greenland using model‐estimated runoff, we estimate a total riverine DOC flux of 0.29% to 0.45% ± 20% Tg C/year. Our flux results indicate that the highest C fluxes occur during the time of year when the majority of C is modern in age. However, higher melt rates from the Greenland ice sheet and longer growing seasons could result in increasing amounts of ancient C from the Greenland ice sheet and from the periglacial landscape to the ocean.

     
    more » « less
  2. Abstract

    The composition and cycling dynamics of marine dissolved organic carbon (DOC) have received increased interest in recent years; however, little research has focused on the refractory, low molecular weight (LMW) component that makes up the majority of this massive C pool. We measured stable isotopic (δ13C), radioisotopic (Δ14C), and compositional (C/N,13C solid‐state NMR) properties of separately isolated high molecular weight (HMW) and LMW DOC fractions collected using a coupled ultrafiltration and solid phase extraction approach from throughout the water column in the North Central Pacific and Central North Atlantic. The selective isolation of LMW DOC material allowed the first investigation of the composition and cycling of a previously elusive fraction of the DOC pool. The structural composition of the LMW DOC material was homogeneous throughout the water column and closely matched carboxylic‐rich alicyclic material that has been proposed as a major component of the marine refractory DOC pool. Examination of offsets in the measured parameters between the deep waters of the two basins provides the first direct assessment of changes in the properties of this material with aging and utilization during ocean circulation. While our direct measurements largely confirm hypotheses regarding the relative recalcitrance of HMW and LMW DOC, we also demonstrate a number of novel observations regarding the removal and addition of DOC during global ocean circulation, including additions of fresh carbohydrate‐like HMW DOC to the deep ocean and large‐scale removal of both semilabile HMW and recalcitrant LMW DOC.

     
    more » « less
  3. Abstract

    We report marine dissolved organic carbon (DOC) concentrations, and DOC Δ14C and δ13C in seawater collected from the West Indian Ocean during the GO‐SHIP I07N cruise in 2018. We find bomb14C in DOC from the upper 1,000 m of the water column. There is no significant change in ∆14C of DOC in deep water northward, unlike that of dissolved inorganic carbon (DIC), suggesting that transport of deep water northward is not controlling the14C age of DOC. Variability of DOC ∆14C, including high values in the deep waters, is more pronounced than in other oceans, suggesting that dissolution of surface derived particulate organic carbon is a source of modern carbon to deep DOC in the West Indian Ocean. Low δ13C are present at two of the five stations studied, suggesting a source of low δ13C DOC, or additional microbial utilization of deep DOC.

     
    more » « less
  4. Abstract

    Climate change is thawing and potentially mobilizing vast quantities of organic carbon (OC) previously stored for millennia in permafrost soils of northern circumpolar landscapes. Climate‐driven increases in fire and thermokarst may play a key role in OC mobilization by thawing permafrost and promoting transport of OC. Yet, the extent of OC mobilization and mechanisms controlling terrestrial‐aquatic transfer are unclear. We demonstrate that hydrologic transport of soil dissolved OC (DOC) from the active layer and thawing permafrost to headwater streams is extremely heterogeneous and regulated by the interactions of soils, seasonal thaw, fire, and thermokarst. Repeated sampling of streams in eight headwater catchments of interior Alaska showed that the mean age of DOC for each stream ranges widely from modern to ∼2,000 years B.P. Together, an endmember mixing model and nonlinear, generalized additive models demonstrated that Δ14C‐DOC signature (and mean age) increased from spring to fall, and was proportional to hydrologic contributions from a solute‐rich water source, related to presumed deeper flow paths found predominantly in silty catchments. This relationship was correlated with and mediated by catchment properties. Mean DOC ages were older in catchments with >50% burned area, indicating that fire is also an important explanatory variable. These observations underscore the high heterogeneity in aged C export and difficulty of extrapolating estimates of permafrost‐derived DOC export from watersheds to larger scales. Our results provide the foundation for developing a conceptual model of permafrost DOC export necessary for advancing understanding and prediction of land‐water C exchange in changing boreal landscapes.

     
    more » « less
  5. Abstract

    We apply a new approach for the δ13C analysis of single organic‐walled microfossils (OWM) to three sites in the Appalachian Basin of New York (AB) that span the Late Devonian Biotic Crisis (LDBC). Our data provide new insights into the nature of the Frasnian–Famennian carbon cycle in the AB and also provide possible constraints on the paleoecology of enigmatic OWM ubiquitous in Paleozoic shale successions. The carbon isotope compositions of OWM are consistent with normal marine organic matter of autochthonous origins and range from −32 to −17‰, but average −25‰ across all samples and are consistently13C‐enriched compared to bulk sediments (δ13Cbulk) by ~0–10‰. We observe no difference between the δ13COWMof leiospheres (smooth‐walled) and acanthomorphic (spinose) acritarch OWM, indicating that our data are driven by ecological rather than taxonomic signals. We hypothesize that the offset between δ13COWMand δ13Cbulkis in part due to a large δ13C gradient in the AB water column where OWM utilized relatively13C‐enriched dissolved inorganic carbon near the surface. Thus, the organisms producing the balance of the total organic carbon were assimilating13C‐depleted C sources, including but not limited to respired organic carbon or byproducts of fermentation. We also observe a systematic decrease in both δ13COWMand δ13Cbulkof 3‰ from shoreward to open‐ocean facies that may reflect the effect of13C‐enriched dissolved inorganic carbon (DIC) derived from riverine sources in the relatively enclosed AB. The hypothesized steep carbon isotope gradient in the AB could be due to a strong biological pump; this in turn may have contributed to low oxygen bottom water conditions during the LDBC. This is the first time single‐microfossil δ13Corganalyses of eukaryotes have been directly compared to bulk δ13Corgin the deep‐time fossil record.

     
    more » « less