skip to main content


Title: Applying climate change refugia to forest management and old‐growth restoration
Abstract

Recent studies highlight the potential of climate change refugia (CCR) to support the persistence of biodiversity in regions that may otherwise become unsuitable with climate change. However, a key challenge in using CCR for climate resilient management lies in how CCR may intersect with existing forest management strategies, and subsequently influence how landscapes buffer species from negative impacts of warming climate. We address this challenge in temperate coastal forests of the Pacific Northwestern United States, where declines in the extent of late‐successional forests have prompted efforts to restore old‐growth forest structure. One common approach for doing so involves selectively thinning forest stands to enhance structural complexity. However, dense canopy is a key forest feature moderating understory microclimate and potentially buffering organisms from climate change impacts, raising the possibility that approaches for managing forests for old‐growth structure may reduce the extent and number of CCR. We used remotely sensed vegetation indices to identify CCR in an experimental forest with control and thinned (restoration) treatments, and explored the influence of biophysical variables on buffering capacity. We found that remotely sensed vegetation indices commonly used to identify CCR were associated with understory temperature and plant community composition, and thus captured aspects of landscape buffering that might instill climate resilience and be of interest to management. We then examined the interaction between current restoration strategies and CCR, and found that selective thinning for promoting old‐growth structure had only very minor, if any, effects on climatic buffering. In all, our study demonstrates that forest management approaches aimed at restoring old‐growth structure through targeted thinning do not greatly decrease buffering capacity, despite a known link between dense canopy and CCR. More broadly, this study illustrates the value of using remote sensing approaches to identify CCR, facilitating the integration of climate change adaptation with other forest management approaches.

 
more » « less
NSF-PAR ID:
10409549
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Global Change Biology
Volume:
29
Issue:
13
ISSN:
1354-1013
Page Range / eLocation ID:
p. 3692-3706
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Across the globe, the forest carbon sink is increasingly vulnerable to an expanding array of low- to moderate-severity disturbances. However, some forest ecosystems exhibit functional resistance (i.e., the capacity of ecosystems to continue functioning as usual) following disturbances such as extreme weather events and insect or fungal pathogen outbreaks. Unlike severe disturbances (e.g., stand-replacing wildfires), moderate severity disturbances do not always result in near-term declines in forest production because of the potential for compensatory growth, including enhanced subcanopy production. Community-wide shifts in subcanopy plant functional traits, prompted by disturbance-driven environmental change, may play a key mechanistic role in resisting declines in net primary production (NPP) up to thresholds of canopy loss. However, the temporal dynamics of these shifts, as well as the upper limits of disturbance for which subcanopy production can compensate, remain poorly characterized. In this study, we leverage a 4-year dataset from an experimental forest disturbance in northern Michigan to assess subcanopy community trait shifts as well as their utility in predicting ecosystem NPP resistance across a wide range of implemented disturbance severities. Through mechanical girdling of stems, we achieved a gradient of severity from 0% (i.e., control) to 45, 65, and 85% targeted gross canopy defoliation, replicated across four landscape ecosystems broadly representative of the Upper Great Lakes ecoregion. We found that three of four examined subcanopy community weighted mean (CWM) traits including leaf photosynthetic rate ( p = 0.04), stomatal conductance ( p = 0.07), and the red edge normalized difference vegetation index ( p < 0.0001) shifted rapidly following disturbance but before widespread changes in subcanopy light environment triggered by canopy tree mortality. Surprisingly, stimulated subcanopy production fully compensated for upper canopy losses across our gradient of experimental severities, achieving complete resistance (i.e., no significant interannual differences from control) of whole ecosystem NPP even in the 85% disturbance treatment. Additionally, we identified a probable mechanistic switch from nutrient-driven to light-driven trait shifts as disturbance progressed. Our findings suggest that remotely sensed traits such as the red edge normalized difference vegetation index (reNDVI) could be particularly sensitive and robust predictors of production response to disturbance, even across compositionally diverse forests. The potential of leaf spectral indices to predict post-disturbance functional resistance is promising given the capabilities of airborne to satellite remote sensing. We conclude that dynamic functional trait shifts following disturbance can be used to predict production response across a wide range of disturbance severities. 
    more » « less
  2. Abstract

    The Sierra Nevada has experienced unprecedented wildfires and reduced snowmelt runoff in recent decades, due partially to anthropogenic climate change and over a century of fire suppression. To address these challenges, public land agencies are planning forest restoration treatments, which have the potential to both increase water availability and reduce the likelihood of uncontrollable wildfires. However, the impact of forest restoration on snowpack is site specific and not well understood across gradients of climate and topography. To improve our understanding of how forest restoration might impact snowpack across diverse conditions in the central Sierra Nevada, we run the high‐resolution (1 m) energy and mass balance Snow Physics and Lidar Mapping (SnowPALM) model across five 23–75 km2subdomains in the region where forest thinning is planned or recently completed. We conduct two virtual thinning experiments by removing all trees shorter than 10 or 20 m tall and rerunning SnowPALM to calculate the change in meltwater input. Our results indicate heterogeneous responses to thinning due to differences in climate and wind across our five central Sierra Nevada subdomains. We also predict the largest increases in snow retention when thinning forests with tall (7–20 m) and dense (40–70% canopy cover) trees, highlighting the importance of pre‐thinning vegetation structure. We develop a decision support tool using a random forests model to determine which regions would most benefit from thinning. In many locations, we expect major forest restoration to increase snow accumulation, while other areas with short and sparse canopies, as well as sunny and windy climates, are more likely to see decreased snowpack following thinning. Our decision support tool provides stand‐scale (30 m) information to land managers across the central Sierra Nevada region to best take advantage of climate and existing forest structure to obtain the greatest snowpack benefits from forest restoration.

     
    more » « less
  3. Abstract

    Efforts to catalog global biodiversity have often focused on aboveground taxonomic diversity, with limited consideration of belowground communities. However, diversity aboveground may influence the diversity of belowground communities and vice versa. In addition to taxonomic diversity, the structural diversity of plant communities may be related to the diversity of soil bacterial and fungal communities, which drive important ecosystem processes but are difficult to characterize across broad spatial scales. In forests, canopy structural diversity may influence soil microorganisms through its effects on ecosystem productivity and root architecture, and via associations between canopy structure, stand age, and species richness. Given that structural diversity is one of the few types of diversity that can be readily measured remotely (e.g., using light detection and ranging—LiDAR), establishing links between structural and microbial diversity could facilitate the detection of belowground biodiversity hotspots. We investigated the potential for using remotely sensed information about forest structural diversity as a predictor of soil microbial community richness and composition. We calculated LiDAR‐derived metrics of structural diversity as well as a suite of stand and soil properties from 38 forested plots across the central hardwoods region of Indiana, USA, to test whether forest canopy structure is linked with the community richness and diversity of four key soil microbial groups: bacteria, fungi, arbuscular mycorrhizal (AM) fungi, and ectomycorrhizal (EM) fungi. We found that the density of canopy vegetation is positively associated with the taxonomic richness (alpha diversity) of EM fungi, independent of changes in plant taxonomic richness. Further, structural diversity metrics were significantly correlated with the overall community composition of bacteria, EM, and total fungal communities. However, soil properties were the strongest predictors of variation in the taxonomic richness and community composition of microbial communities in comparison with structural diversity and tree species diversity. As remote sensing tools and algorithms are rapidly advancing, these results may have important implications for the use of remote sensing of vegetation structural diversity for management and restoration practices aimed at preserving belowground biodiversity.

     
    more » « less
  4. Abstract

    A century of industrial‐scale management has transformed vast swaths of forest land across the Pacific Northwest (PNW), USA, from ancient forests with complex structure and diverse habitats to young forests with simple structure and dominated by few species. Consequently, there have been calls to restore ecosystem integrity and resilience. Here, we apply data from a watershed‐scale experiment to determine if restoration treatments have achieved our management goal of accelerating the development of old‐growth forest characteristics. We provide empirical evidence of how restoration treatments have affected key old‐growth forest indicators resulting in larger trees, more complex vertical and horizontal forest structure, reduced stand density, and increased understory plant richness. Our study also demonstrates that some restoration indicators responded in counter‐intuitive ways contingent on interactions between stand age and restoration treatment. Through this work, we learned two important lessons: (1) more time and monitoring may be needed to fully understand the effects of restoration treatments and (2) a “one and done” approach of implementing restoration treatments may not achieve a full suite of old‐growth characteristics. Moreover, long‐term management for wildlife habitat and climate resilience will likely require an adaptive approach, with ongoing monitoring continually informing and adjusting management practices.

     
    more » « less
  5. Abstract

    Early successional tropical forests could mitigate climate change via rapid accumulation of atmospheric carbon. However, liana (woody vine) abundance and biomass has been increasing in many tropical forests over the past decades, which may slow the speed at which secondary forests accumulate biomass. Lianas decrease biomass accumulation in tropical forests, and may have a particularly strong effect on young forests by stalling tree growth. As forests mature, trees may outgrow or shed lianas, thus escaping some of the negative effects of lianas. Alternatively, lianas may have the strongest effect in older successional forests if the effect of lianas is commensurate with their density, which increases dramatically in the first decades of forest succession. We tested these two hypotheses using a landscape liana‐removal experiment in 30 forest stands that ranged from 10 to 35 yr old in Central Panama. We measured tree growth and biomass accumulation in the stands every year from 2014 to 2017. We found that the effect of liana removal on large trees (≥20‐cm diameter) decreased with forest age, supporting the hypothesis that lianas have the strongest negative effects on trees, and thus biomass uptake and carbon storage, in very young successional forests. Large trees accumulated more biomass in the absence of lianas in younger forests than in older forests (compared to controls) even after accounting for the effect of canopy completeness and crown illumination, implying that the detrimental effects of lianas go well beyond resource availability and crown health. There was no significant effect of lianas on small trees (1–20‐cm diameter), likely because lianas seek light and thus do not deploy their leaves on small trees that are trapped in the forest understory. Our results show that high liana density early in forest succession reduces forest biomass accumulation by negatively impacting large trees, thus decreasing the capacity of young secondary forests to mitigate climate change. Although the negative effects of lianas on forest biomass diminish as forests age, they do not disappear, and thus lianas are an important component of tropical forest carbon budgets throughout succession.

     
    more » « less