skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Regional Heatwave Prediction Using Graph Neural Network and Weather Station Data
Abstract Heatwaves lead to catastrophic consequences on public health and the economy. Accurate and timely predictions of regional heatwaves can improve climate preparedness and foster decision‐making to alleviate the burdens due to climate change. In this paper, we propose a heatwave prediction algorithm based on a novel deep learning model, that is, Graph Neural Network (GNN). This new GNN framework can provide real time warnings of the sudden occurrence of regional heatwaves with high accuracy at lower costs of computation and data collection. In addition, its interpretable structure unravels the spatiotemporal patterns of regional heatwaves and helps to enrich our understanding of the general climate dynamics and the causal influences between locations. The proposed GNN framework can be applied for the detection and prediction of other extreme or compound climate events, which calls for future studies.  more » « less
Award ID(s):
2230772
PAR ID:
10409571
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
7
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Global climate change has been shown to cause longer, more intense, and frequent heatwaves, of which anthropogenic stressors concentrated in urban areas are a critical contributor. In this study, we investigate the causal interactions during heatwaves across 520 urban sites in the U.S. combining complex network and causal analysis. The presence of regional mediators is manifest in the constructed causal networks, together with long-range teleconnections. More importantly, megacities, such as New York City and Chicago, are causally connected with most of other cities and mediate the structure of urban networks during heatwaves. We also identified a significantly positive correlation between the causality strength and the total populations in megacities. These findings corroborate the contribution of human activities e.g., anthropogenic emissions of greenhouse gases or waste heat, to urban heatwaves. The emergence of teleconnections and supernodes are informative for the prediction and adaptation to heatwaves under global climate change. 
    more » « less
  2. Abstract Heatwaves are extreme near-surface temperature events that can have substantial impacts on ecosystems and society. Early warning systems help to reduce these impacts by helping communities prepare for hazardous climate-related events. However, state-of-the-art prediction systems can often not make accurate forecasts of heatwaves more than two weeks in advance, which are required for advance warnings. We therefore investigate the potential of statistical and machine learning methods to understand and predict central European summer heatwaves on time scales of several weeks. As a first step, we identify the most important regional atmospheric and surface predictors based on previous studies and supported by a correlation analysis: 2-m air temperature, 500-hPa geopotential, precipitation, and soil moisture in central Europe, as well as Mediterranean and North Atlantic sea surface temperatures, and the North Atlantic jet stream. Based on these predictors, we apply machine learning methods to forecast two targets: summer temperature anomalies and the probability of heatwaves for 1–6 weeks lead time at weekly resolution. For each of these two target variables, we use both a linear and a random forest model. The performance of these statistical models decays with lead time, as expected, but outperforms persistence and climatology at all lead times. For lead times longer than two weeks, our machine learning models compete with the ensemble mean of the European Centre for Medium-Range Weather Forecast’s hindcast system. We thus show that machine learning can help improve subseasonal forecasts of summer temperature anomalies and heatwaves. Significance StatementHeatwaves (prolonged extremely warm temperatures) cause thousands of fatalities worldwide each year. These damaging events are becoming even more severe with climate change. This study aims to improve advance predictions of summer heatwaves in central Europe by using statistical and machine learning methods. Machine learning models are shown to compete with conventional physics-based models for forecasting heatwaves more than two weeks in advance. These early warnings can be used to activate effective and timely response plans targeting vulnerable communities and regions, thereby reducing the damage caused by heatwaves. 
    more » « less
  3. Abstract Simultaneous heatwaves affecting multiple regions (referred to as concurrent heatwaves) pose compounding threats to various natural and societal systems, including global food chains, emergency response systems, and reinsurance industries. While anthropogenic climate change is increasing heatwave risks across most regions, the interactions between warming and circulation changes that yield concurrent heatwaves remain understudied. Here, we quantify historical (1979–2019) trends in concurrent heatwaves during the warm season [May–September (MJJAS)] across the Northern Hemisphere mid- to high latitudes. We find a significant increase of ∼46% in the mean spatial extent of concurrent heatwaves and ∼17% increase in their maximum intensity, and an approximately sixfold increase in their frequency. Using self-organizing maps, we identify large-scale circulation patterns (300 hPa) associated with specific concurrent heatwave configurations across Northern Hemisphere regions. We show that observed changes in the frequency of specific circulation patterns preferentially increase the risk of concurrent heatwaves across particular regions. Patterns linking concurrent heatwaves across eastern North America, eastern and northern Europe, parts of Asia, and the Barents and Kara Seas show the largest increases in frequency (∼5.9 additional days per decade). We also quantify the relative contributions of circulation pattern changes and warming to overall observed concurrent heatwave day frequency trends. While warming has a predominant and positive influence on increasing concurrent heatwave frequency, circulation pattern changes have a varying influence and account for up to 0.8 additional concurrent heatwave days per decade. Identifying regions with an elevated risk of concurrent heatwaves and understanding their drivers is indispensable for evaluating projected climate risks on interconnected societal systems and fostering regional preparedness in a changing climate. Significance StatementHeatwaves pose a major threat to human health, ecosystems, and human systems. Simultaneous heatwaves affecting multiple regions can exacerbate such threats. For example, multiple food-producing regions simultaneously undergoing heat-related crop damage could drive global food shortages. We assess recent changes in the occurrence of simultaneous large heatwaves. Such simultaneous heatwaves are 7 times more likely now than 40 years ago. They are also hotter and affect a larger area. Their increasing occurrence is mainly driven by warming baseline temperatures due to global heating, but changes in weather patterns contribute to disproportionate increases over parts of Europe, the eastern United States, and Asia. Better understanding the drivers of weather pattern changes is therefore important for understanding future concurrent heatwave characteristics and their impacts. 
    more » « less
  4. Graph rationales are representative subgraph structures that best explain and support the graph neural network (GNN) predictions. Graph rationalization involves the joint identification of these subgraphs during GNN training, resulting in improved interpretability and generalization. GNN is widely used for node-level tasks such as paper classification and graph-level tasks such as molecular property prediction. However, on both levels, little attention has been given to GNN rationalization and the lack of training examples makes it difficult to identify the optimal graph rationales. In this work, we address the problem by proposing a unified data augmentation framework with two novel operations on environment subgraphs to rationalize GNN prediction. We define the environment subgraph as the remaining subgraph after rationale identification and separation. The framework efficiently performs rationale–environment separation in therepresentation spacefor a node’s neighborhood graph or a graph’s complete structure to avoid the high complexity of explicit graph decoding and encoding. We conduct experiments on 17 datasets spanning node classification, graph classification, and graph regression. Results demonstrate that our framework is effective and efficient in rationalizing and enhancing GNNs for different levels of tasks on graphs. 
    more » « less
  5. Abstract Coral reefs support the world’s most diverse marine ecosystem and provide invaluable goods and services for millions of people worldwide. They are however experiencing frequent and intensive marine heatwaves that are causing coral bleaching and mortality. Coarse-grained climate models predict that few coral reefs will survive the 3 °C sea-surface temperature rise in the coming century. Yet, field studies show localized pockets of coral survival and recovery even under high-temperature conditions. Quantifying recovery from marine heatwaves is central to making accurate predictions of coral-reef trajectories into the near future. Here we introduce the world’s most comprehensive database on coral recovery following marine heatwaves and other disturbances, called Heatwaves and Coral-Recovery Database (HeatCRD) encompassing 29,205 data records spanning 44 years from 12,266 sites, 83 countries, and 160 data sources. These data provide essential information to coral-reef scientists and managers to best guide coral-reef conservation efforts at both local and regional scales. 
    more » « less