skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2230772

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT The accepted gap—the time or distance a driver deems sufficient to enter or cross an intersection—is a key indicator of traffic risk, particularly at uncontrolled three‐legged intersections. Smaller accepted gaps are linked to higher risk due to an increased chance of vehicle conflicts. This study investigates the relationship between accepted gaps and risk and proposes a method to quantify the level of risk and severity (LORS) to guide targeted safety interventions. Data on vehicle speed, accepted gap and critical gap were collected from six rural intersections in India. Using a binary logit regression model and clustering techniques, the LORS was estimated and validated against actual accident data, yielding a predictive accuracy of up to 83%. The significance of this study lies in its novel data‐driven approach to safety assessment using parameters easily measured in the field. Designed for heterogeneous traffic conditions, the method provides traffic engineers and planners with a practical tool to assess intersection safety, recommend specific remedial measures and prioritise interventions based on risk and severity levels. With potential for automation and scalability, this research contributes to the development of safer road systems, particularly in low‐resource settings where conventional crash data is limited or unavailable. 
    more » « less
  2. Abstract The effects of heat exposure on negative affect are thought to be central to the observed relationships between hot summer days and deleterious outcomes, such as violent crime or mental health crises. As these relationships are likely to be magnified by the effects of climate change, a better understanding of how consistent or variable the effects of hot weather on affective states is required. The current work combines data gathered from an ecological momentary assessment (EMA) study on individuals’ thermal perceptions, comfort, and affective states in outdoor environments during their daily lives with high spatiotemporal resolution climate-modeled weather variables. Using these data, associations between objective weather variables (temperature, humidity, etc.), perceived heat (thermal perception and comfort), and affective states are examined. Overall, objective weather data reasonably predicted perception and comfort, but only comfort predicted negative affective states. The variance explained across individuals was generally very low in predicting negative affect or comfort, but within-person variance explained was high. In other words, while there may be a relatively consistent relationship between temperature and psychological experience for any given person, there are significant individual differences across people. Age and gender were examined as moderators of these relationships, and while gender had no impact, participant age showed several significant interactions. Specifically, while older adults tended to experience more thermal discomfort and perceived higher temperatures as hotter, the relationship between discomfort and negative affect was lower in older adults. Taken together, these results emphasize the importance of thermal discomfort specifically in predicting negative affect, as well as the high inter-individual variability in thermal perceptions and comfort for the same ambient temperatures. 
    more » « less
  3. Abstract The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert significant influence on wind flow fields in urban street canyons and the thermal environment of the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their importance, these critical attributes are less commonly available and rarely utilized in urban climate models compared to planar land use and land cover data. In this study, we explicitly mapped theheight oftreesandbuildings (HiTAB) across the city of Chicago at 1 m spatial resolution using a data fusion approach. This approach integrates high-precision light detection and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset to calculate the height of surface objects, while the rest of the datasets were used to delineate trees and buildings. We validated the derived height information against the existing building database in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable initiative in the effort to inform urban land surface parameterizations using real-world data. Given their high spatial resolution, the height maps can be adopted in physical-based and data-driven urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover, our method can be extended to other urban regions, benefiting from the growing availability of high-resolution urban informatics globally. Collectively, these datasets can substantially contribute to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and planning, providing a more comprehensive understanding of urban environments. 
    more » « less
  4. Abstract The accurate modeling of urban microclimate is a challenging task given the high surface heterogeneity of urban land cover and the vertical structure of street morphology. Recent years have witnessed significant efforts in numerical modeling and data collection of the urban environment. Nonetheless, it is difficult for the physical‐based models to fully utilize the high‐resolution data under the constraints of computing resources. The advancement in machine learning (ML) techniques offers the computational strength to handle the massive volume of data. In this study, we proposed a modeling framework that uses ML approach to estimate point‐scale street‐level air temperature from the urban‐resolving meso‐scale climate model and a suite of hyper‐resolution urban geospatial data sets, including three‐dimensional urban morphology, parcel‐level land use inventory, and weather observations from a sensor network. We implemented this approach in the City of Chicago as a case study to demonstrate the capability of the framework. The proposed approach vastly improves the resolution of temperature predictions in cities, which will help the city with walkability, drivability, and heat‐related behavioral studies. Moreover, we tested the model's reliability on out‐of‐sample locations to investigate the modeling uncertainties and the application potentials to the other areas. This study aims to gain insights into next‐gen urban climate modeling and guide the observation efforts in cities to build the strength for the holistic understanding of urban microclimate dynamics. 
    more » « less
  5. Abstract Carbon dioxide (CO2) quantification is critical for assessing city‐level carbon emissions and sustainable urban development. While urban vegetation has the potential to provide environmental benefits, such as heat and carbon mitigation, the CO2exchange from biogenic sectors and its impact from the environmental perturbations are often overlooked. It is also challenging to simulate the plant functions in the complex urban terrain. This study presents a processed‐based modeling approach to assess the biogenic carbon fluxes from the vegetated areas over the Chicago Metropolitan Area (CMA) using the Weather Research and Forecast—Urban Biogenic Carbon exchange model. We investigate the change of CO2sink power in CMA under heatwaves and irrigation. The results indicate that the vegetation plays a significant role in the city's carbon portfolio and the landscaping management has the potential to reduce carbon emissions significantly. Furthermore, based on the competing mechanisms in the biogenic carbon balance identified in this study, we develop a novel Environmental Benefit Score metrics framework to identify the vulnerability and mitigation measures associated with nature‐based solutions (NbS) within CMA. By using the generalized portable framework and our science‐policy confluence analysis presented in this study, global cities can maximize the effectiveness of NbS and accelerate carbon neutrality. 
    more » « less
  6. Abstract Heatwaves lead to catastrophic consequences on public health and the economy. Accurate and timely predictions of regional heatwaves can improve climate preparedness and foster decision‐making to alleviate the burdens due to climate change. In this paper, we propose a heatwave prediction algorithm based on a novel deep learning model, that is, Graph Neural Network (GNN). This new GNN framework can provide real time warnings of the sudden occurrence of regional heatwaves with high accuracy at lower costs of computation and data collection. In addition, its interpretable structure unravels the spatiotemporal patterns of regional heatwaves and helps to enrich our understanding of the general climate dynamics and the causal influences between locations. The proposed GNN framework can be applied for the detection and prediction of other extreme or compound climate events, which calls for future studies. 
    more » « less
  7. Free, publicly-accessible full text available September 22, 2026
  8. Walking and cycling, as active modes of transportation, play a vital role in advancing sustainable urban mobility by reducing emissions and improving public health. However, widespread adoption faces challenges such as inadequate infrastructure, safety concerns, socio-cultural barriers, and policy limitations. This study systematically reviewed 56 peer-reviewed articles from 2004 to 2024, across 30 countries across five continents, employing the Capability, Opportunity and Motivation-Behaviour (COM-B) framework to identify the main drivers of walking and cycling behaviours. Findings highlight that the lack of dedicated infrastructure, inadequate enforcement of road safety measures, personal and traffic safety concerns, and social stigmas collectively hinder active mobility. Strategic interventions such as developing integrated cycling networks, financial incentives, urban planning initiatives, and behavioural change programs have promoted increased engagement in walking and cycling. Enhancing urban mobility further requires investment in pedestrian and cycling infrastructure, improved integration with public transportation, the implementation of traffic-calming measures, and public education campaigns. Post-pandemic initiatives to establish new pedestrian and cycling spaces offer a unique opportunity to establish enduring changes that support active transportation. The study suggests expanding protected cycling lanes and integrating pedestrian pathways with public transit systems to strengthen safety and accessibility. Additionally, leveraging digital tools can enhance mobility planning and coordination. Future research is needed to explore the potential of artificial intelligence in enhancing mobility analysis, supporting the development of climate-resilient infrastructure, and informing transport policies that integrate gender perspectives to better understand long-term behavioural changes. Coordinated policy efforts and targeted investments can lead to more equitable transportation access, support sustainability goals, and alleviate urban traffic congestion. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  9. Free, publicly-accessible full text available August 28, 2026
  10. Free, publicly-accessible full text available July 1, 2026