skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bump Morphology of the CMAGIC Diagram
Abstract We apply the color–magnitude intercept calibration method (CMAGIC) to the Nearby Supernova Factory SNe Ia spectrophotometric data set. The currently existing CMAGIC parameters are the slope and intercept of a straight line fit to the linear region in the color–magnitude diagram, which occurs over a span of approximately 30 days after maximum brightness. We define a new parameter,ωXY, the size of the “bump” feature near maximum brightness for arbitrary filtersXandY. We find a significant correlation between the slope of the linear region,βXY, in the CMAGIC diagram andωXY. These results may be used to our advantage, as they are less affected by extinction than parameters defined as a function of time. Additionally,ωXYis computed independently of templates. We find that current empirical templates are successful at reproducing the features described in this work, particularly SALT3, which correctly exhibits the negative correlation between slope and “bump” size seen in our data. In 1D simulations, we show that the correlation between the size of the “bump” feature andβXYcan be understood as a result of chemical mixing due to large-scale Rayleigh–Taylor instabilities.  more » « less
Award ID(s):
1817099
PAR ID:
10409593
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 10
Size(s):
Article No. 10
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The broad-line region (BLR) size–luminosity relation has paramount importance for estimating the mass of black holes in active galactic nuclei (AGNs). Traditionally, the size of the HβBLR is often estimated from the optical continuum luminosity at 5100 Å, while the size of the HαBLR and its correlation with the luminosity is much less constrained. As a part of the Seoul National University AGN Monitoring Project, which provides 6 yr photometric and spectroscopic monitoring data, we present our measurements of the Hαlags of high-luminosity AGNs. Combined with the measurements for 42 AGNs from the literature, we derive the size–luminosity relations of the HαBLR against the broad Hαand 5100 Å continuum luminosities. We find the slope of the relations to be 0.61 ± 0.04 and 0.59 ± 0.04, respectively, which are consistent with the Hβsize–luminosity relation. Moreover, we find a linear relation between the 5100 Å continuum luminosity and the broad Hαluminosity across 7 orders of magnitude. Using these results, we propose a new virial mass estimator based on the Hαbroad emission line, finding that the previous mass estimates based on scaling relations in the literature are overestimated by up to 0.7 dex at masses lower than 107M
    more » « less
  2. Abstract We present a study on the inference of cosmological and astrophysical parameters using stacked galaxy cluster profiles. Utilizing the CAMELS-zoomGZ simulations, we explore how various cluster properties—such as X-ray surface brightness, gas density, temperature, metallicity, and Compton-y profiles—can be used to predict parameters within the 28-dimensional parameter space of the IllustrisTNG model. Through neural networks, we achieve a high correlation coefficient of 0.97 or above for all cosmological parameters, including Ωm,H0, andσ8, and over 0.90 for the remaining astrophysical parameters, showcasing the effectiveness of these profiles for parameter inference. We investigate the impact of different radial cuts, with bins ranging from 0.1R200cto 0.7R200c, to simulate current observational constraints. Additionally, we perform a noise sensitivity analysis, adding up to 40% Gaussian noise (corresponding to signal-to-noise ratios as low as 2.5), revealing that key parameters such as Ωm,H0, and the initial mass function slope remain robust even under extreme noise conditions. We also compare the performance of full radial profiles against integrated quantities, finding that profiles generally lead to more accurate parameter inferences. Our results demonstrate that stacked galaxy cluster profiles contain crucial information on both astrophysical processes within groups and clusters and the underlying cosmology of the Universe. This underscores their significance for interpreting the complex data expected from next-generation surveys and reveals, for the first time, their potential as a powerful tool for parameter inference. 
    more » « less
  3. Abstract We measure the star cluster mass function (CMF) for the Local Group galaxy M33. We use the catalog of stellar clusters selected from the Panchromatic Hubble Andromeda Treasury: Triangulum Extended Region survey. We analyze 711 clusters in M33 with 7.0 < log ( Age / yr ) < 8.5 , and log(M/M) > 3.0 as determined from color–magnitude diagram fits to individual stars. The M33 CMF is best described by a Schechter function with power-law slopeα= − 2.06 0.13 + 0.14 , and truncation mass log(Mc/M) = 4.24 0.13 + 0.16 . The data show strong evidence for a high-mass truncation, thus strongly favoring a Schechter function fit over a pure power law. M33's truncation mass is consistent with the previously identified linear trend betweenMc, and star formation rate surface density, ΣSFR. We also explore the effect that individual cluster mass uncertainties have on derived mass function parameters, and find evidence to suggest that large cluster mass uncertainties have the potential to bias the truncation mass of fitted mass functions at the 1σlevel. 
    more » « less
  4. Abstract We present a near-infrared (NIR) candidate star cluster catalog for the central kiloparsec of M82 based on new JWST NIRCam images. We identify star cluster candidates using the F250M filter, finding 1357 star cluster candidates with stellar masses >104M. Compared to previous optical catalogs, nearly all (87%) of the candidates we identify are new. The star cluster candidates have a median intrinsic cluster radius of ≈1 pc and stellar masses up to 106M. By comparing the color–color diagram to dust-freeyggdrasilstellar population models, we estimate that the star cluster candidates haveAV∼ 3−24 mag, corresponding toA2.5μm∼ 0.3−2.1 mag. There is still appreciable dust extinction toward these clusters into the NIR. We measure the stellar masses of the star cluster candidates, assuming ages of 0 and 8 Myr. The slope of the resulting cluster mass function isβ= 1.9 ± 0.2, in excellent agreement with studies of star clusters in other galaxies. 
    more » « less
  5. Abstract We study the magneto-optical properties of Fe–Co–Al ordered alloys in the terahertz range of frequencies. Using the standard Kubo-based approach to compute intrinsic part of the σ x y ( ω ) we find a strong dependence ofσxyonωin the terahertz range. For example, we find that below 10 THz Co3Al has nearly constantσxyand that above 10 THz it is reduced by about 50 times. Furthermore, we find a strong dependence ofσxyon the chemical composition. For example, we find that the addition of Al to Fe changes the sign ofσxy, while the addition of Co to Fe leads to a nonmonotonic dependence ofσxyon Co concentration. 
    more » « less