skip to main content


Title: The Hawaii Infrared Parallax Program. VI. The Fundamental Properties of 1000+ Ultracool Dwarfs and Planetary-mass Objects Using Optical to Mid-infrared Spectral Energy Distributions and Comparison to BT-Settl and ATMO 2020 Model Atmospheres
Abstract

We derive the bolometric luminosities (Lbol) of 865 field-age and 189 young ultracool dwarfs (spectral types M6–T9, including 40 new discoveries presented here) by directly integrating flux-calibrated optical to mid-infrared (MIR) spectral energy distributions (SEDs). The SEDs consist of low-resolution (R∼ 150) near-infrared (NIR; 0.8–2.5μm) spectra (including new spectra for 97 objects), optical photometry from the Pan-STARRS1 survey, and MIR photometry from the CatWISE2020 survey and Spitzer/IRAC. OurLbolcalculations benefit from recent advances in parallaxes from Gaia, Spitzer, and UKIRT, as well as new parallaxes for 19 objects from CFHT and Pan-STARRS1 presented here. Coupling ourLbolmeasurements with a new uniform age analysis for all objects, we estimate substellar masses, radii, surface gravities, and effective temperatures (Teff) using evolutionary models. We construct empirical relationships forLbolandTeffas functions of spectral type and absolute magnitude, determine bolometric corrections in optical and infrared bandpasses, and study the correlation between evolutionary model-derived surface gravities and NIR gravity classes. Our sample enables a detailed characterization ofBT-SettlandATMO2020 atmospheric model systematics as a function of spectral type and position in the NIR color–magnitude diagram. We find the greatest discrepancies between atmospheric and evolutionary model-derivedTeff(up to 800 K) and radii (up to 2.0RJup) at the M/L spectral type transition boundary. With 1054 objects, this work constitutes the largest sample to date of ultracool dwarfs with determinations of their fundamental parameters.

 
more » « less
NSF-PAR ID:
10478194
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
959
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 63
Size(s):
["Article No. 63"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spectral energy distributions (SEDs) from X-ray to far-infrared (FIR) wavelengths are presented for a sample of 1246 X-ray-luminous active galactic nuclei (AGNs;L0.5–10 keV> 1043erg s−1), withzspec< 1.2, selected from Stripe 82X, COSMOS, and GOODS-N/S. The rest-frame SEDs show a wide spread (∼2.5 dex) in the relative strengths of broad continuum features at X-ray, ultraviolet (UV), mid-infrared (MIR), and FIR wavelengths. A linear correlation (log–log slope of 0.7 ± 0.04) is found betweenLMIRandLX. There is significant scatter in the relation between theLUVandLXowing to heavy obscuration; however, the most luminous and unobscured AGNs show a linear correlation (log–log slope of 0.8 ± 0.06) in the relation above this scatter. The relation betweenLFIRandLXis predominantly flat, but with decreasing dispersion atLX> 1044erg s−1. The ratio between the “galaxy-subtracted” bolometric luminosity and the intrinsicLXincreases from a factor of ∼10 to 70 from logLbol/(erg s−1) = 44.5 to 46.5. Characteristic SED shapes have been determined by grouping AGNs based on relative strengths of the UV and MIR emission. The averageL1μmis constant for the majority of these SED shapes, while AGNs with the strongest UV and MIR emission have elevatedL1μm, consistent with the AGN emission dominating their SEDs at optical and near-infrared wavelengths. A strong correlation is found between the SED shape and both theLXandLbol, such thatLbol/LX= 20.4 ± 1.8, independent of the SED shape. This is consistent with an evolutionary scenario of increasingLbolwith decreasing obscuration as the AGN blows away circumnuclear gas.

     
    more » « less
  2. Abstract

    We present a uniform forward-modeling analysis of 90 late-M and L dwarfs in nearby young (∼10–200 Myr) moving groups, the Pleiades, and the Hyades using low-resolution (R≈ 150) near-infrared (0.9–2.4μm) spectra and the BT-Settl model atmospheres. We derive the objects’ effective temperatures, surface gravities, radii, and masses by comparing our spectra to the models using a Bayesian framework with nested sampling and calculate the same parameters using evolutionary models. Assuming the evolutionary-based parameters are more robust, our spectroscopically inferred parameters from BT-Settl exhibit two types of systematic behavior for objects near the M-L spectral type boundary. Several objects are clustered aroundTeff≈ 1800 K andlogg5.5dex, implying impossibly large masses (150–1400MJup), while others are clustered aroundTeff≳ 3000 K andlogg3.0dex, implying unphysically low masses and unreasonably young ages. We find the fitted BT-Settl model spectra tend to overpredict the peakJ- andH-band flux for objects located near the M-L boundary, suggesting the dust content included in the model atmospheres is insufficient to match the observations. By adding an interstellar medium–like reddening law to the BT-Settl model spectra, we find the fits between models and observed spectra are greatly improved, with the largest reddening coefficients occurring at the M-L transition. This work delivers a systematic examination of the BT-Settl model atmospheres and constitutes the largest spectral analysis of benchmark late-M- and L-type brown dwarfs to date.

     
    more » « less
  3. Abstract

    Hot DA white dwarfs (DAWDs) have fully radiative pure hydrogen atmospheres that are the least complicated to model. Pulsationally stable, they are fully characterized by their effective temperatureTeffand surface gravitylogg, which can be deduced from their optical spectra and used in model atmospheres to predict their spectral energy distributions (SEDs). Based on this, three bright DAWDs have defined the spectrophotometric flux scale of the CALSPEC system of the Hubble Space Telescope (HST). In this paper we add 32 new fainter (16.5 <V< 19.5) DAWDs spread over the whole sky and within the dynamic range of large telescopes. Using ground-based spectra and panchromatic photometry with HST/WFC3, a new hierarchical analysis process demonstrates consistency between model and observed fluxes above the terrestrial atmosphere to <0.004 mag rms from 2700 to 7750 Å and to 0.008 mag rms at 1.6μm for the total set of 35 DAWDs. These DAWDs are thus established as spectrophotometric standards with unprecedented accuracy from the near-ultraviolet to the near-infrared, suitable for both ground- and space-based observatories. They are embedded in existing surveys like the Sloan Digital Sky Survey, Pan-STARRS, and Gaia, and will be naturally included in the Large Synoptic Survey Telescope  survey by the Rubin Observatory. With additional data and analysis to extend the validity of their SEDs further into the infrared, these spectrophotometric standard stars could be used for JWST, as well as for the Roman and Euclid observatories.

     
    more » « less
  4. Abstract

    We present the characterization of the low-gravity M6 dwarf 2MASS J06195260-2903592, previously identified as an unusual field object based on its strong IR excess and variable near-IR spectrum. Multiple epochs of low-resolution (R≈ 150) near-IR spectra show large-amplitude (≈0.1–0.5 mag) continuum variations on timescales of days to 12 yr, unlike the small-amplitude variability typical for field ultracool dwarfs. The variations between epochs are well-modeled as changes in the relative extinction (ΔAV≈ 2 mag). Similarly, Panoramic Survey Telescope and Rapid Response System 1 optical photometry varies on timescales as long as 11 yr (and possibly as short as an hour) and implies comparableAVchanges. Near Earth Object Wide-field Infrared Survey Explorer mid-IR light curves also suggest changes on 6 month timescales, with amplitudes consistent with the optical/near-IR extinction variations. However, near-IR spectra, near-IR photometry, and optical photometry obtained in the past year indicate that the source can also be stable on hourly and monthly timescales. From comparison to objects of similar spectral type, the total extinction of 2MASS J0619-2903 seems to beAV≈ 4–6 mag, with perhaps epochs of lower extinction. Gaia Early Data Release 3 (EDR3) finds that 2MASS J0619-2903 has a wide-separation (1.′2 = 10,450 au) stellar companion, with an isochronal age of3110+22Myr and a mass of0.300.03+0.04M. Adopting this companion’s age and EDR3 distance (145.2 ± 0.6 pc), we estimate a mass of 0.11–0.17Mfor 2MASS J0619-2903. Altogether, 2MASS J0619-2903 appears to possess an unusually long-lived primordial circumstellar disk, perhaps making it a more obscured analog to the “Peter Pan” disks found around a few M dwarfs in nearby young moving groups.

     
    more » « less
  5. Abstract

    We present preexplosion optical and infrared (IR) imaging at the site of the type II supernova (SN II) 2023ixf in Messier 101 at 6.9 Mpc. We astrometrically registered a ground-based image of SN 2023ixf to archival Hubble Space Telescope (HST), Spitzer Space Telescope (Spitzer), and ground-based near-IR images. A single point source is detected at a position consistent with the SN at wavelengths ranging from HSTRband to Spitzer 4.5μm. Fitting with blackbody and red supergiant (RSG) spectral energy distributions (SEDs), we find that the source is anomalously cool with a significant mid-IR excess. We interpret this SED as reprocessed emission in a 8600Rcircumstellar shell of dusty material with a mass ∼5 × 10−5Msurrounding alog(L/L)=4.74±0.07andTeff=3920160+200K RSG. This luminosity is consistent with RSG models of initial mass 11M, depending on assumptions of rotation and overshooting. In addition, the counterpart was significantly variable in preexplosion Spitzer 3.6 and 4.5μm imaging, exhibiting ∼70% variability in both bands correlated across 9 yr and 29 epochs of imaging. The variations appear to have a timescale of 2.8 yr, which is consistent withκ-mechanism pulsations observed in RSGs, albeit with a much larger amplitude than RSGs such asαOrionis (Betelgeuse).

     
    more » « less