Post‐polymerization modification (PPM) via direct C−H functionalization is a powerful synthetic strategy to convert polymer feed‐stocks into value‐added products. We found that a metal‐free, Se‐catalyzed allylic C−H amination provided an efficient method for PPM of polynorbornenes (PNBs) produced via ring‐opening metathesis polymerization. Inherent to the mechanism of the allylic amination, PPM on PNBs preserved the alkene functional groups along the polymer backbone, while also avoiding transposition of the double bonds. Amination using a series of aryl sulfonamides led to good control over the degree of functionalization, access to a range of functionalities, and tunable thermal properties from the resulting polymers.
Post‐polymerization modification (PPM) via direct C−H functionalization is a powerful synthetic strategy to convert polymer feed‐stocks into value‐added products. We found that a metal‐free, Se‐catalyzed allylic C−H amination provided an efficient method for PPM of polynorbornenes (PNBs) produced via ring‐opening metathesis polymerization. Inherent to the mechanism of the allylic amination, PPM on PNBs preserved the alkene functional groups along the polymer backbone, while also avoiding transposition of the double bonds. Amination using a series of aryl sulfonamides led to good control over the degree of functionalization, access to a range of functionalities, and tunable thermal properties from the resulting polymers.
more » « less- PAR ID:
- 10409594
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 23
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)Allylic substitution, pioneered by the work of Tsuji and Trost, has been an invaluable tool in the synthesis of complex molecules for decades. An attractive alternative to allylic substitution is the direct functionalization of allylic C–H bonds of unactivated alkenes, thereby avoiding the need for prefunctionalization. Significant early advances in allylic C–H functionalization were made using palladium catalysis. However, Pd-catalyzed reactions are generally limited to the functionalization of terminal olefins with stabilized nucleophiles. Insights from Li, Cossy, and Tanaka demonstrated the utility of RhCp x catalysts for allylic functionalization. Since these initial reports, a number of key intermolecular Co-, Rh-, and Ir-catalyzed allylic C–H functionalization reactions have been reported, offering significant complementarity to the Pd-catalyzed reactions. Herein, we report a summary of recent advances in intermolecular allylic C–H functionalization via group IX-metal π-allyl complexes. Mechanism-driven development of new catalysts is highlighted, and the potential for future developments is discussed.more » « less
-
Abstract Vinylsilanes and vinylboronates are common building blocks for organic synthesis, but direct functionalization of these species without the participation of either the C=C or C−Si/B bonds is rare. Herein, we report a metal‐free allylic C−H amination reaction of these vinylmetalloid species that installs a new C−N bond without competing transmetallation or alkene addition. In this transformation, the silicon or boron substituent inverts the usual regioselectivity, directing amination to the site distal to that group. Subsequent cross‐coupling or demetallation allows access to complementary regioisomeric products. Density Functional Theory computations revealed that the observed regioselectivity is due to a subtle combination of electronic and counterintuitive steric factors that favor initial attack of selenium at the silicon‐bearing carbon atom.
-
Abstract Vinylsilanes and vinylboronates are common building blocks for organic synthesis, but direct functionalization of these species without the participation of either the C=C or C−Si/B bonds is rare. Herein, we report a metal‐free allylic C−H amination reaction of these vinylmetalloid species that installs a new C−N bond without competing transmetallation or alkene addition. In this transformation, the silicon or boron substituent inverts the usual regioselectivity, directing amination to the site distal to that group. Subsequent cross‐coupling or demetallation allows access to complementary regioisomeric products. Density Functional Theory computations revealed that the observed regioselectivity is due to a subtle combination of electronic and counterintuitive steric factors that favor initial attack of selenium at the silicon‐bearing carbon atom.
-
null (Ed.)Allylic C–H functionalization catalysed by group 9 Cp* transition-metal complexes has recently gained significant attention. These reactions have expanded allylic C–H functionalization to include di- and trisubstituted olefins, and a broad range of coupling partners. More specifically, several catalytic C–N, C–O, and C–C bond forming allylic C–H functionalization reactions have been reported, proceeding via MCp*-π-allyl intermediates. Herein we present an overview of these reactions by mechanistic paradigm. We also place this information in context of recent advances, as well as, limitations that remain for this class of reactions.more » « less