skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: SHARP – VIII. J0924+0219 lens mass distribution and time-delay prediction through adaptive-optics imaging
ABSTRACT Strongly lensed quasars can provide measurements of the Hubble constant (H0) independent of any other methods. One of the key ingredients is exquisite high-resolution imaging data, such as Hubble Space Telescope (HST) imaging and adaptive-optics (AO) imaging from ground-based telescopes, which provide strong constraints on the mass distribution of the lensing galaxy. In this work, we expand on the previous analysis of three time-delay lenses with AO imaging (RX J1131−1231, HE 0435−1223, and PG 1115+080), and perform a joint analysis of J0924+0219 by using AO imaging from the Keck telescope, obtained as part of the Strong lensing at High Angular Resolution Program (SHARP) AO effort, with HST imaging to constrain the mass distribution of the lensing galaxy. Under the assumption of a flat Λ cold dark matter (ΛCDM) model with fixed Ωm = 0.3, we show that by marginalizing over two different kinds of mass models (power-law and composite models) and their transformed mass profiles via a mass-sheet transformation, we obtain $$\Delta t_{\rm BA}=6.89\substack{+0.8\\-0.7}\, h^{-1}\hat{\sigma }_{v}^{2}$$ d, $$\Delta t_{\rm CA}=10.7\substack{+1.6\\-1.2}\, h^{-1}\hat{\sigma }_{v}^{2}$$ d, and $$\Delta t_{\rm DA}=7.70\substack{+1.0\\-0.9}\, h^{-1}\hat{\sigma }_{v}^{2}$$ d, where $$h=H_{0}/100\,\rm km\, s^{-1}\, Mpc^{-1}$$ is the dimensionless Hubble constant and $$\hat{\sigma }_{v}=\sigma ^{\rm ob}_{v}/(280\,\rm km\, s^{-1})$$ is the scaled dimensionless velocity dispersion. Future measurements of time delays with 10 per cent uncertainty and velocity dispersion with 5 per cent uncertainty would yield a H0 constraint of ∼15 per cent precision.  more » « less
Award ID(s):
1906976 1836016 1907396 1715611
PAR ID:
10409618
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
513
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2349-2359
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present the measurement of the Hubble constant, H0, with three strong gravitational lens systems. We describe a blind analysis of both PG 1115+080 and HE 0435−1223 as well as an extension of our previous analysis of RXJ 1131−1231. For each lens, we combine new adaptive optics (AO) imaging from the Keck Telescope, obtained as part of the SHARP (Strong-lensing High Angular Resolution Programme) AO effort, with Hubble Space Telescope (HST) imaging, velocity dispersion measurements, and a description of the line-of-sight mass distribution to build an accurate and precise lens mass model. This mass model is then combined with the COSMOGRAIL-measured time delays in these systems to determine H0. We do both an AO-only and an AO + HST analysis of the systems and find that AO and HST results are consistent. After unblinding, the AO-only analysis gives $$H_{0}=82.8^{+9.4}_{-8.3}~\rm km\, s^{-1}\, Mpc^{-1}$$ for PG 1115+080, $$H_{0}=70.1^{+5.3}_{-4.5}~\rm km\, s^{-1}\, Mpc^{-1}$$ for HE 0435−1223, and $$H_{0}=77.0^{+4.0}_{-4.6}~\rm km\, s^{-1}\, Mpc^{-1}$$ for RXJ 1131−1231. The joint AO-only result for the three lenses is $$H_{0}=75.6^{+3.2}_{-3.3}~\rm km\, s^{-1}\, Mpc^{-1}$$. The joint result of the AO + HST analysis for the three lenses is $$H_{0}=76.8^{+2.6}_{-2.6}~\rm km\, s^{-1}\, Mpc^{-1}$$. All of these results assume a flat Λ cold dark matter cosmology with a uniform prior on Ωm in [0.05, 0.5] and H0 in [0, 150] $$\rm km\, s^{-1}\, Mpc^{-1}$$. This work is a collaboration of the SHARP and H0LiCOW teams, and shows that AO data can be used as the high-resolution imaging component in lens-based measurements of H0. The full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper. 
    more » « less
  2. Abstract We present the lens mass model of the quadruply-imaged gravitationally lensed quasar WFI2033−4723, and perform a blind cosmographical analysis based on this system. Our analysis combines (1) time-delay measurements from 14 years of data obtained by the COSmological MOnitoring of GRAvItational Lenses (COSMOGRAIL) collaboration, (2) high-resolution Hubble Space Telescope imaging, (3) a measurement of the velocity dispersion of the lens galaxy based on ESO-MUSE data, and (4) multi-band, wide-field imaging and spectroscopy characterizing the lens environment. We account for all known sources of systematics, including the influence of nearby perturbers and complex line-of-sight structure, as well as the parametrization of the light and mass profiles of the lensing galaxy. After unblinding, we determine the effective time-delay distance to be $$4784_{-248}^{+399}~\mathrm{Mpc}$$, an average precision of $$6.6{{\ \rm per\ cent}}$$. This translates to a Hubble constant $$H_{0} = 71.6_{-4.9}^{+3.8}~\mathrm{km~s^{-1}~Mpc^{-1}}$$, assuming a flat ΛCDM cosmology with a uniform prior on Ωm in the range [0.05, 0.5]. This work is part of the H0 Lenses in COSMOGRAIL’s Wellspring (H0LiCOW) collaboration, and the full time-delay cosmography results from a total of six strongly lensed systems are presented in a companion paper (H0LiCOW XIII). 
    more » « less
  3. ABSTRACT Stringent observational constraints on the subgalactic matter power spectrum would allow one to distinguish between the concordance ΛCDM and the various alternative dark-matter models that predict significantly different properties of mass structure in galactic haloes. Galaxy–galaxy strong gravitational lensing provides a unique opportunity to probe the subgalactic mass structure in lens galaxies beyond the Local Group. Here, we demonstrate the first application of a novel methodology to observationally constrain the subgalactic matter power spectrum in the inner regions of massive elliptical lens galaxies on 1–10 kpc scales from the power spectrum of surface-brightness anomalies in highly magnified galaxy-scale Einstein rings and gravitational arcs. The pilot application of our approach to Hubble Space Telescope (HST/WFC3/F390W) observations of the SLACS lens system SDSS J0252+0039 allows us to place the following observational constraints (at the 99 per cent confidence level) on the dimensionless convergence power spectrum $$\Delta ^{2}_{\delta \kappa }$$ and the standard deviation in the aperture mass σAM: $$\Delta ^{2}_{\delta \kappa }\lt 1$$ (σAM < 0.8 × 108 M⊙) on 0.5-kpc scale, $$\Delta ^{2}_{\delta \kappa }\lt 0.1$$ (σAM < 1 × 108 M⊙) on 1-kpc scale and $$\Delta ^{2}_{\delta \kappa }\lt 0.01$$ (σAM < 3 × 108 M⊙) on 3-kpc scale. These first upper-limit constraints still considerably exceed the estimated effect of CDM subhaloes. However, future analysis of a larger sample of galaxy–galaxy strong lens systems can substantially narrow down these limits and possibly rule out dark-matter models that predict a significantly higher level of density fluctuations on the critical subgalactic scales. 
    more » « less
  4. null (Ed.)
    ABSTRACT We present a catalogue of 22 755 objects with slitless, optical, Hubble Space Telescope (HST) spectroscopy from the Grism Lens-Amplified Survey from Space (GLASS). The data cover ∼220 sq. arcmin to 7-orbit (∼10 ks) depth in 20 parallel pointings of the Advanced Camera for Survey’s G800L grism. The fields are located 6 arcmin away from 10 massive galaxy clusters in the HFF and CLASH footprints. 13 of the fields have ancillary HST imaging from these or other programs to facilitate a large number of applications, from studying metal distributions at z ∼ 0.5, to quasars at z ∼ 4, to the star formation histories of hundreds of galaxies in between. The spectroscopic catalogue has a median redshift of 〈z〉 = 0.60 with a median uncertainty of $$\Delta z / (1+z)\lesssim 2{{\ \rm per\ cent}}$$ at $$F814\mathit{ W}\lesssim 23$$ AB. Robust continuum detections reach a magnitude fainter. The 5 σ limiting line flux is $$f_{\rm lim}\approx 5\times 10^{-17}\rm ~erg~s^{-1}~cm^{-2}$$ and half of all sources have 50 per cent of pixels contaminated at ≲1 per cent. All sources have 1D and 2D spectra, line fluxes/uncertainties and identifications, redshift probability distributions, spectral models, and derived narrow-band emission-line maps from the Grism Redshift and Line Analysis tool (grizli). We provide other basic sample characterizations, show data examples, and describe sources and potential investigations of interest. All data and products will be available online along with software to facilitate their use. 
    more » « less
  5. ABSTRACT The combination of galaxy–galaxy lensing (GGL) and galaxy clustering is a powerful probe of low-redshift matter clustering, especially if it is extended to the non-linear regime. To this end, we use an N-body and halo occupation distribution (HOD) emulator method to model the redMaGiC sample of colour-selected passive galaxies in the Dark Energy Survey (DES), adding parameters that describe central galaxy incompleteness, galaxy assembly bias, and a scale-independent multiplicative lensing bias Alens. We use this emulator to forecast cosmological constraints attainable from the GGL surface density profile ΔΣ(rp) and the projected galaxy correlation function wp, gg(rp) in the final (Year 6) DES data set over scales $$r_p=0.3\!-\!30.0\, h^{-1} \, \mathrm{Mpc}$$. For a $$3{{\ \rm per\ cent}}$$ prior on Alens we forecast precisions of $$1.9{{\ \rm per\ cent}}$$, $$2.0{{\ \rm per\ cent}}$$, and $$1.9{{\ \rm per\ cent}}$$ on Ωm, σ8, and $$S_8 \equiv \sigma _8\Omega _m^{0.5}$$, marginalized over all halo occupation distribution (HOD) parameters as well as Alens. Adding scales $$r_p=0.3\!-\!3.0\, h^{-1} \, \mathrm{Mpc}$$ improves the S8 precision by a factor of ∼1.6 relative to a large scale ($$3.0\!-\!30.0\, h^{-1} \, \mathrm{Mpc}$$) analysis, equivalent to increasing the survey area by a factor of ∼2.6. Sharpening the Alens prior to $$1{{\ \rm per\ cent}}$$ further improves the S8 precision to $$1.1{{\ \rm per\ cent}}$$, and it amplifies the gain from including non-linear scales. Our emulator achieves per cent-level accuracy similar to the projected DES statistical uncertainties, demonstrating the feasibility of a fully non-linear analysis. Obtaining precise parameter constraints from multiple galaxy types and from measurements that span linear and non-linear clustering offers many opportunities for internal cross-checks, which can diagnose systematics and demonstrate the robustness of cosmological results. 
    more » « less