skip to main content

Search for: All records

Award ID contains: 1947448

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    There is a growing recognition that subsurface fluid injection can produce not only earthquakes, but also aseismic slip on faults. A major challenge in understanding interactions between injection-related aseismic and seismic slip on faults is identifying aseismic slip on the field scale, given that most monitored fields are only equipped with seismic arrays. We present a modeling workflow for evaluating the possibility of aseismic slip, given observational constraints on the spatial-temporal distribution of microseismicity, injection rate, and wellhead pressure. Our numerical model simultaneously simulates discrete off-fault microseismic events and aseismic slip on a main fault during fluid injection. We apply the workflow to the 2012 Enhanced Geothermal System injection episode at Cooper Basin, Australia, which aimed to stimulate a water-saturated granitic reservoir containing a highly permeable ($$k = 10^{-13} - 10^{-12}$$k=10-13-10-12$$\hbox {m}{^2}$$m2) fault zone. We find that aseismic slip likely contributed to half of the total moment release. In addition, fault weakening from pore pressure changes, not elastic stress transfer from aseismic slip, induces the majority of observed microseismic events, given the inferred stress state. We derive a theoretical model to better estimate the time-dependent spatial extent of seismicity triggered by increases in pore pressure. To our knowledge, this is the first time injection-induced aseismic slip in a granitic reservoir has been inferred, suggesting that aseismic slip could be widespread across a range of lithologies.

    more » « less
  2. Abstract

    Inversions of InSAR ground deformation in the Delaware Basin have revealed an aseismic slip on semi‐optimally oriented normal faults located close to disposal wells. The slip, occurring over 3–5 years, extends approximately 1 km down‐dip, over 10 km along strike, and reaches 25 cm. We develop and calibrate 2D and pseudo‐3D coupled pore pressure diffusion and rate‐state models with velocity‐strengthening friction tailored to this unique height‐bounded fault geometry. Pressure diffusion is limited to a high‐permeability fault damage zone, and the net influx of fluid is adjusted to match the observed slip. A 1–2 MPa pressure increase initiates slip, with ∼5 MPa additional pressure increase required to produce ∼20 cm slip. Most slip occurs at approximately constant friction. Fault zone permeability must exceed ∼10−13 m2to match the along‐strike extent of slip. Models of the type developed here can be used to operationally manage injection‐induced aseismic slip.

    more » « less
  3. Abstract

    It is widely recognized that fluid injection can trigger aseismic fault slip. However, the processes by which the fluid‐rock interactions facilitate or inhibit slip are poorly understood and some are oversimplified in most models of injection‐induced slip. In this study, we perform a 2D anti‐plane shear investigation of aseismic slip that occurs in response to fluid injection into a permeable fault governed by rate‐and‐state friction. We account for porosity and permeability changes that accompany slip, including dilatancy, and quantify how these processes affect pore pressure diffusion, which couples to aseismic slip. Fault response to injection has two phases. In the first phase, slip is negligible and pore pressure closely follows the standard linear diffusion model. Pressurization eventually triggers aseismic slip close to the injection site. In the second phase, aseismic slip front expands outward and dilatancy causes pore pressure to depart from the linear diffusion model. We quantify how prestress, injection rate, permeability and other fluid transport properties affect the slip front migration rate, finding rates ranging from 10 to 1,000 m/day for typical parameters. The migration rate is strongly influenced by the fault's closeness to failure and injection rate. The total slip on the fault, on the other hand, is primarily determined by the injected volume, with minimal sensitivity to injection rate. Additionally, we show that when dilatancy is neglected, slip front migration rate and total slip can be several times higher. Our modeling demonstrates that porosity and permeability evolution, especially dilatancy, fundamentally alters how faults respond to fluid injection.

    more » « less
  4. Abstract

    Localized frictional sliding on faults in the continental crust transitions at depth to distributed deformation in viscous shear zones. This brittle‐ductile transition (BDT), and/or the transition from velocity‐weakening (VW) to velocity‐strengthening (VS) friction, are controlled by the lithospheric thermal structure and composition. Here, we investigate these transitions, and their effect on the depth extent of earthquakes, using 2D antiplane shear simulations of a strike‐slip fault with rate‐and‐state friction. The off‐fault material is viscoelastic, with temperature‐dependent dislocation creep. We solve the heat equation for temperature, accounting for frictional and viscous shear heating that creates a thermal anomaly relative to the ambient geotherm which reduces viscosity and facilitates viscous flow. We explore several geotherms and effective normal stress distributions (by changing pore pressure), quantifying the thermal anomaly, seismic and aseismic slip, and the transition from frictional sliding to viscous flow. The thermal anomaly can reach several hundred degrees below the seismogenic zone in models with hydrostatic pressure but is smaller for higher pressure (and these high‐pressure models are most consistent with San Andreas Fault heat flow constraints). Shear heating raises the BDT, sometimes to where it limits rupture depth rather than the frictional VW‐to‐VS transition. Our thermomechanical modeling framework can be used to evaluate lithospheric rheology and thermal models through predictions of earthquake ruptures, postseismic and interseismic crustal deformation, heat flow, and the geological structures that reflect the complex deformation beneath faults.

    more » « less
  5. Abstract

    Fault-zone fluids control effective normal stress and fault strength. While most earthquake models assume a fixed pore fluid pressure distribution, geologists have documented fault valving behavior, that is, cyclic changes in pressure and unsteady fluid migration along faults. Here we quantify fault valving through 2-D antiplane shear simulations of earthquake sequences on a strike-slip fault with rate-and-state friction, upward Darcy flow along a permeable fault zone, and permeability evolution. Fluid overpressure develops during the interseismic period, when healing/sealing reduces fault permeability, and is released after earthquakes enhance permeability. Coupling between fluid flow, permeability and pressure evolution, and slip produces fluid-driven aseismic slip near the base of the seismogenic zone and earthquake swarms within the seismogenic zone, as ascending fluids pressurize and weaken the fault. This model might explain observations of late interseismic fault unlocking, slow slip and creep transients, swarm seismicity, and rapid pressure/stress transmission in induced seismicity sequences.

    more » « less