Abstract MUTYH is a clinically important DNA glycosylase that thwarts mutations by initiating base-excision repair at 8-oxoguanine (OG):A lesions. The roles for its [4Fe-4S] cofactor in DNA repair remain enigmatic. Functional profiling of cancer-associated variants near the [4Fe-4S] cofactor reveals that most variations abrogate both retention of the cofactor and enzyme activity. Surprisingly, R241Q and N238S retained the metal cluster and bound substrate DNA tightly, but were completely inactive. We determine the crystal structure of human MUTYH bound to a transition state mimic and this shows that Arg241 and Asn238 build an H-bond network connecting the [4Fe-4S] cluster to the catalytic Asp236 that mediates base excision. The structure of the bacterial MutY variant R149Q, along with molecular dynamics simulations of the human enzyme, support a model in which the cofactor functions to position and activate the catalytic Asp. These results suggest that allosteric cross-talk between the DNA binding [4Fe-4S] cofactor and the base excision site of MUTYH regulate its DNA repair function.
more »
« less
Structural snapshots of base excision by the cancer-associated variant MutY N146S reveal a retaining mechanism
Abstract DNA glycosylase MutY plays a critical role in suppression of mutations resulted from oxidative damage, as highlighted by cancer-association of the human enzyme. MutY requires a highly conserved catalytic Asp residue for excision of adenines misinserted opposite 8-oxo-7,8-dihydroguanine (OG). A nearby Asn residue hydrogen bonds to the catalytic Asp in structures of MutY and its mutation to Ser is an inherited variant in human MUTYH associated with colorectal cancer. We captured structural snapshots of N146S Geobacillus stearothermophilus MutY bound to DNA containing a substrate, a transition state analog and enzyme-catalyzed abasic site products to provide insight into the base excision mechanism of MutY and the role of Asn. Surprisingly, despite the ability of N146S to excise adenine and purine (P) in vitro, albeit at slow rates, N146S-OG:P complex showed a calcium coordinated to the purine base altering its conformation to inhibit hydrolysis. We obtained crystal structures of N146S Gs MutY bound to its abasic site product by removing the calcium from crystals of N146S-OG:P complex to initiate catalysis in crystallo or by crystallization in the absence of calcium. The product structures of N146S feature enzyme-generated β-anomer abasic sites that support a retaining mechanism for MutY-catalyzed base excision.
more »
« less
- PAR ID:
- 10409735
- Date Published:
- Journal Name:
- Nucleic Acids Research
- Volume:
- 51
- Issue:
- 3
- ISSN:
- 0305-1048
- Page Range / eLocation ID:
- 1034 to 1049
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
MutY excises adenine (A) from 8-oxo-guanine:adenine (OG:A) lesions in DNA to initiate base excision repair (BER) and thereby prevent mutations. A catalytic Glu, found at position 43 in the enzyme fromGeobacillus stearothermophilus(GsMutY), protonates the nucleobase at N7to labilize the N-glycosidic bond. The resulting oxocarbenium ion transition state is stabilized by a covalent DNA-enzyme intermediate and resolved by nucleophilic attack to yield thebeta-anomer abasic AP site product. The retaining SN1 mechanism for MutY posits deprotonation of the nucleophile by the catalytic Glu. Here we tested kinetic and structural consequences of Glu replacement and found that E43Q and E43S substitution variants were severely impaired, retained measurable activity, but engage the substrate nucleobase in ananticonformation, rotated by 180° from thesynconformation seen in previous substrate complexes. The enzyme-generated AP product is observed in itsalpha-anomer configuration for these Glu-replacement variants. Comparison with inverting adenine glycosylases that act on RNA or nucleosides shows that MutY's mechanism is uniquely reliant on one catalytic residue for both leaving group and nucleophile activation, a situation that may serve to ensure only rare adenines paired with OG are excised.more » « less
-
Background: MutY initiated base excision repair (BER) protects against mutations that otherwise result from oxidative damage to guanine. The 8-oxo-7,8-dihydro-guanine lesion (OG) pairs equally well with C or A, a source of ambiguity that explains high rates of GC → TA mutations for biallelic defects in the gene encoding MUTYH in humans. MutY/MUTYH intercepts the A:OG lesion and removes the chemically correct but informationally defective adenine nucleobase. A catalytic Glu – Glu43 in Geobacillus stearothermophilus MutY (Gs MutY); Glu37 in Escherichia coli MutY (Ec MutY); Glu134 in human MUTYH – is a defining chemical motif for A:OG adenine DNA glycosylases that is not found in other helix-hairpin-helix family members. While the importance of Glu for MutY’s catalytic mechanism is well understood, its origin is unknown. Discovery: Here we tested the structural and kinetic consequences of Glu replacement and found an alternate, slower mechanism, that yields a different stereoisomer for the AP site product. The impact on catalytic rate was consistent removal of acid/base catalysis and retention of transition state stabilization. High-resolution structures for E43Q and E43S substitution variants of Gs MutY show substrate disengagement and the enzyme-generated AP product in its alpha-anomer configuration. These results suggest that acquisition of Glu was a key innovation for emergence of the MutY/MUTYH lineage from an ancestral DNA glycosylase.more » « less
-
The adenine, cytosine, and guanine bases of DNA are susceptible to alkylation by the aldehyde products of lipid peroxidation and by the metabolic byproducts of vinyl chloride pollutants. The resulting adducts spontaneously cyclize to form harmful etheno lesions. Cells employ a variety of DNA repair pathways to protect themselves from these pro-mutagenic modifications. Human alkyladenine DNA glycosylase (AAG) is thought to initiate base excision repair of both 1, N 6 -ethenoadenine (ϵA) and 1, N 2 -ethenoguanine (ϵG). However, it is not clear how AAG might accommodate ϵG in an active site that is complementary to ϵA. This prompted a thorough investigation of AAG-catalyzed excision of ϵG from several relevant contexts. Using single-turnover and multiple-turnover kinetic analyses, we found that ϵG in its natural ϵG·C context is very poorly recognized relative to ϵA·T. Bulged and mispaired ϵG contexts, which can form during DNA replication, were similarly poor substrates for AAG. Furthermore, AAG could not recognize an ϵG site in competition with excess undamaged DNA sites. Guided by previous structural studies, we hypothesized that Asn-169, a conserved residue in the AAG active-site pocket, contributes to discrimination against ϵG. Consistent with this model, the N169S variant of AAG was 7-fold more active for excision of ϵG compared with the wildtype (WT) enzyme. Taken together, these findings suggest that ϵG is not a primary substrate of AAG, and that current models for etheno lesion repair in humans should be revised. We propose that other repair and tolerance mechanisms operate in the case of ϵG lesions.more » « less
-
Base excision repair (BER) enzymes are genomic superheroes that stealthly and accurately identify and remove chemically modified DNA bases. DNA base modifications erode the informational content of DNA and underly many disease phenotypes, most conspicuously, cancer. The “OG” of oxidative base damage, 8-oxo-7,8-dihydroguanine (OG), is particularly insidious due to its miscoding ability that leads to formation of rare pro-mutagenic OG:A mismatches. Thwarting mutagenesis relies on capture of OG:A mismatches prior to DNA replication and removal of the mis-inserted adenine by MutY glycosylases to initiate BER. The threat of OG and the importance of its repair is underscored by the association between inherited dysfunctional variants of the MutY human homolog MUTYH and colorectal cancer, known as MUTYH-associated polyposis (MAP). Our functional studies of the two founder MUTYH variants revealed that both have a compromised activity and reduced affinity for OG:A mismatches. Indeed, these studies underscored the challenge of recognition of OG:A mismatches that are only subtlely structurally different than T:A base-pairs. Since the original discovery of MAP, many MUTYH variants have been reported, with most considered “variants of uncertain significance.” To reveal features associated with damage recognition and adenine excision by MutY and MUTYH, we have developed a multi-pronged chemical biology approach combining enzyme kinetics, X-ray crystallography, single-molecule visualization, and cellular repair assays. In this review, we highlight recent work in our laboratory where we defined MutY structure-activity relationship (SAR) studies using synthetic analogs of OG and A in cellular and in vitro assays. Our studies revealed the 2-amino group of OG as the key distinguishing feature of OG:A mismatches. Indeed, the unique position of the 2-amino group in the major groove of OGsyn:Aanti mismatches provides a means for its rapid detection among a large excess of highly abundant and structurally similar canonical base pairs. Furthermore, site-directed mutagenesis and structural analysis showed that a conserved C-terminal domain β-hairpin “FSH'' loop is critical for OG recognition with the “His” serving as the lesion detector. Notably, MUTYH variants located within and near the FSH loop have been associated with different forms of cancer. Uncovering the role(s) of this loop in lesion recognition provided a detailed understanding of the search and repair process of MutY. Such insights are also useful to identify mutational hotspots and pathogenic variants, that may improve the ability of physicians to diagnose the likelihood of diseases onset and prognosis. The critical importance of the “FSH” loop in lesion detection suggests that it may serve as a unique locus for targeting of probes or inhibitors of MutY/MUTYH to provide new chemical biology tools, and avenues for therapeutic development.more » « less
An official website of the United States government

