skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Level-up: Expand Undergraduate Research Capacity (and Serve Faculty) through Vertically Integrated Projects
Abstract—The Level-up workshop will challenge exclusive and exclusionary models for undergraduate research experiences, and it will give participants tools to expand undergraduate research to serve all students. The model and associated tools are adaptable, and they have been implemented in 44 colleges and universities of varying sizes, settings and missions in 12 countries.  more » « less
Award ID(s):
2013545
PAR ID:
10409771
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Editor(s):
NA
Date Published:
Journal Name:
2022 IEEE Frontiers in Education Conference (FIE)
Volume:
NA
Issue:
NA
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The research will create an academic program (curricular and co-curricular components) that integrates art concepts into an undergraduate engineering program. The goals of the program are increased student innovation, creativity, collegiality, and entrepreneurship, all while broadening the undergraduate talent pool. The programmatic elements are focused on integration of arts in STEM (i.e. STEAM) to achieve the stated goals. The centerpiece is the infusion of STEAM content into laboratories and courses distributed throughout a model engineering program in Metallurgical Engineering. Curricular modifications will be facilitated through involvement of a Resident Artist who will be embedded within the academic program. The research is evidence-based and builds on prior NSF Course Curricular and Laboratory Improvement (CCLI) research that involved highly successful curricular and co-curricular programming associated with integration of blacksmithing into an undergraduate Metallurgical Engineering degree program. A rigorous external assessment of the research will be conducted and includes the use of a variety of assessment tools including Herrmann Brain Dominance Inventory, Small Group Instructional Diagnosis (SGID), and student focus groups. Preliminary results from the SGID and student focus group surveys report positive results with the modified curricula that has been integrated into the initial course, Introduction to Metallurgical Engineering. Student surveys were performed with a primary focus on student advancement in areas of creativity, innovation, and technical knowledge. The self-efficacy studies illustrate a general increase in the students’ perception of their creative skills and technical knowledge. 
    more » « less
  2. null (Ed.)
    This paper focuses on discussing the efforts made to engage students in multi-disciplinary research and integrate teaching and research in the areas of FTIR Spectro- microscopy and image processing and analysis. The author (PI) and co-PIs acquired a Fourier Transform Infrared (FTIR) Spectroscopic Imaging equipment through the National Science Foundation- Major Research Instrumentation (NSF- MRI) grant (#1827134). This project aims to use the equipment to conduct undergraduate and graduate research projects and teach undergraduate and graduate classes. The NSF awarded the California State University Chico (CSU Chico) $175,305 to acquire an FTIR spectrometer and microscope, which are important tools for chemical characterization of samples with infrared active molecules. FTIR Spectroscopic Imaging System especially provides accurate chemical images that reveal the variations in images’ pixels which are mappings of constituent materials of samples rather than a single visible image with slight variations. By employing this equipment in research and the Image Processing course, students can learn how to collect, process and analyze the imaging data of samples and the corresponding spectral data. The students not only will learn how to process a single chemical image, but also will work with the data cubes to consider the pixel intensities along the IR spectrum, experience working with big data, hone the skills to design experiments, analyze larger data sets, develop pre- and post-image processing techniques, and apply and refine math and programming skills. Image processing course conventionally is based on math, digital signal and systems, and requires programming skills such as Matlab, C++, and Python. along with the mentioned knowledge. Additionally, the research conducted by this equipment promotes collaboration between engineering major students and science major students. In this paper, the author will explain how collecting data through running experiments with the FTIR Spectroscopic Imaging equipment helps students visualize theory and relate it to real world problems. This paper also discusses the results of engaging undergraduate students from various majors in research. Moreover, it will discuss some of the projects that were conducted by undergraduate students and their learning outcomes. The objective of the research projects was material characterization towards contribution to health by employing FTIR Spectroscopic Imaging System. 
    more » « less
  3. Abstract As we build a more diverse, equitable, and inclusive culture in the ecological research community, we must work to support new ecologists by empowering them with the knowledge, tools, validation, and sense of belonging in ecology to succeed. Undergraduate research experiences (UREs) are critical for a student's professional and interpersonal skill development and key for recruiting and retaining students from diverse groups to ecology. However, few resources exist that speak directly to an undergraduate researcher on the diversity, equity, and inclusion (DEI) dimensions of embarking on a first research experience. Here, we write primarily for undergraduate readers, though a broader audience of readers, especially URE mentors, will also find this useful. We explain many of the ways a URE benefits undergraduate researchers and describe how URE students from different positionalities can contribute to an inclusive research culture. We address three common sources of anxiety for URE students through a DEI lens: imposter syndrome, communicating with mentors, and safety in fieldwork. We discuss the benefits as well as the unique vulnerabilities and risks associated with fieldwork, including the potential for harassment and assault. Imposter syndrome and toxic field experiences are known to drive students, including students from underrepresented minority groups, out of STEM. Our goal is to encourage all students, including those from underrepresented groups, to apply for UREs, build awareness of their contributions to inclusion in ecology research, and provide strategies for overcoming known barriers. 
    more » « less
  4. This NSF IUSE project is on the Exploration and Design Tier and the Engaged Student Learning Track. It is aimed at better preparing the country’s professional workforce in the renaissance of U.S. skilled manufacturing by creating new personnel proficient in additive manufacturing (AM). AM is mainstream; it has the potential to bring jobs back to the U.S. and add to the nation’s global competitiveness. AM is the process of joining materials to make objects from 3D data in a layer upon layer fashion. The objectives are to develop, assess, revise, and disseminate an upper division course and laboratory, “Additive Manufacturing,” and to advance undergraduate and K-12 student research and creative inquiry activities as well as faculty expertise at three diverse participating universities: Texas Tech, California State-Northridge, and Kansas State. This research/pedagogical team contains a mechanical engineering professor at each university to develop and teach the course, as well as a sociologist trained in K-12 outreach, course assessment, and human subjects research to accurately determine the effects on K-12 and undergraduate students. The proposed course will cover extrusion-based, liquid-based, and powder-based AM processes. For each technology, fundamentals, applications, and advances will be discussed. Students will learn solutions to AM of polymers, metals, and ceramics. Two lab projects will be built to provide hands-on experiences on a variety of state-of-the-art 3D printers. To stimulate innovation, students will design, fabricate, and measure test parts, and will perform experiments to explore process limits and tackle real world problems. They will also engage K-12 students through video demonstrations and mentorship, thus developing presentation skills. Through the project, different pedagogical techniques and assessment tools will be utilized to assess and improve engineering education at both the undergraduate and K-12 levels through varied techniques: i) undergraduate module lesson plans that are scalable to K-12 levels, ii) short informational video lessons created by undergraduates for K-12 students with accompanying in-person mentorship activities at local high schools and MakerSpaces, iii) pre- and post-test assessments of undergraduates’ and K-12 participating students’ AM knowledge, skills, and perceptions of self-efficacy, and iv) focus groups to learn about student concerns/learning challenges. We will also track students institutionally and into their early careers to learn about their use of AM technology professionally. 
    more » « less
  5. This NSF IUSE project is on the Exploration and Design Tier and the Engaged Student Learning Track. It is aimed at better preparing the country’s professional workforce in the renaissance of U.S. skilled manufacturing by creating new personnel proficient in additive manufacturing (AM). AM is mainstream; it has the potential to bring jobs back to the U.S. and add to the nation’s global competitiveness. AM is the process of joining materials to make objects from 3D data in a layer upon layer fashion. The objectives are to develop, assess, revise, and disseminate an upper division course and laboratory, “Additive Manufacturing,” and to advance undergraduate and K-12 student research and creative inquiry activities as well as faculty expertise at three diverse participating universities: Texas Tech, California State Northridge, and Kansas State. This research/pedagogical team contains a mechanical engineering professor at each university to develop and teach the course, as well as a sociologist trained in K-12 outreach, course assessment, and human subjects research to accurately determine the effects on K-12 and undergraduate students. The proposed course will cover extrusion-based, liquid-based, and powder-based AM processes. For each technology, fundamentals, applications, and advances will be discussed. Students will learn solutions to AM of polymers, metals, and ceramics. Two lab projects will be built to provide hands-on experiences on a variety of state-of-the-art 3D printers. To stimulate innovation, students will design, fabricate, and measure test parts, and will perform experiments to explore process limits and tackle real world problems. They will also engage K-12 students through video demonstrations and mentorship, thus developing presentation skills. Through the project, different pedagogical techniques and assessment tools will be utilized to assess and improve engineering education at both the undergraduate and K-12 levels through varied techniques: i) undergraduate module lesson plans that are scalable to K-12 levels, ii) short informational video lessons created by undergraduates for K-12 students with accompanying in-person mentorship activities at local high schools and MakerSpaces, iii) pre- and post-test assessments of undergraduates’ and K-12 participating students’ AM knowledge, skills, and perceptions of self-efficacy, and iv) focus groups to learn about student concerns/learning challenges. We will also track students institutionally and into their early careers to learn about their use of AM technology professionally. 
    more » « less