A<sc>bstract</sc> We investigate spin-refined partition functions in AdS/CFT using Euclidean gravitational path integrals. We construct phase diagrams forZX= Tr(e−βHX) in various dimensions and for different choices of discrete isometryX, discovering rich structures at finite temperature. WhenXis a reflection,ZXcounts the difference between the number of even- and odd-spin microstates. The high-temperature regime is universally dominated by$$ \mathcal{CRT} $$ -twisted black holes in any dimension, and in odd spacetime dimensions we examine whether complex rotating black hole solutions can contribute to spin-refined observables or potentially dominate at finite temperature. We also analyze the microcanonical ensemble. There the leading contribution almost always comes from rotating black holes, showing that the two ensembles are not necessarily equivalent.
more »
« less
Gravitational thermodynamics without the conformal factor problem: partition functions and Euclidean saddles from Lorentzian path integrals
A bstract Thermal partition functions for gravitational systems have traditionally been studied using Euclidean path integrals. But in Euclidean signature the gravitational action suffers from the conformal factor problem, which renders the action unbounded below. This makes it difficult to take the Euclidean formulation as fundamental. However, despite their familiar association with periodic imaginary time, thermal gravitational partition functions can also be described by real-time path integrals over contours defined by real Lorentzian metrics. The one caveat is that we should allow certain codimension-2 singularities analogous to the familiar Euclidean conical singularities. With this understanding, we show that the usual Euclidean-signature black holes (or their complex rotating analogues) define saddle points for the real-time path integrals that compute our partition functions. Furthermore, when the black holes have positive specific heat, we provide evidence that a codimension-2 subcontour of our real Lorentz-signature contour of integration can be deformed so as to show that these black holes saddles contribute with non-zero weight to the semiclassical limit, and that the same is then true of the remaining two integrals.
more »
« less
- PAR ID:
- 10409806
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 7
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A bstract We revisit the stability of black hole saddles for the Euclidean path integral describing the canonical partition function Z ( β ) for gravity inside a spherical reflecting cavity. The boundary condition at the cavity wall couples the transverse-traceless (TT) and pure-trace modes that are traditionally used to describe fluctuations about Euclidean Schwarzschild black holes in infinite-volume asymptotically flat and asymototically AdS spacetimes. This coupling obstructs the familiar Gibbons-Hawking-Perry treatment of the conformal factor problem, as Wick rotation of the pure-trace modes would require that the TT modes be rotated as well. The coupling also leads to complex eigenvalues for the Lichnerowicz operator. We nevertheless find that the Lichnerowicz operator can be diagonalized in the space of coupled modes. This observation allows the eigenmodes to define a natural generalization of the pure-trace Wick-rotation recipe used in infinite volume, with the result that a mode with eigenvalue λ is stable when Re λ > 0. In any cavity, and with any cosmological constant Λ ≤ 0, we show this recipe to reproduce the expectation from black hole thermodynamics that large Euclidean black holes define stable saddles while the saddles defined by small Euclidean black holes are unstable.more » « less
-
A<sc>bstract</sc> Gravitational Rényi computations have traditionally been described in the language of Euclidean path integrals. In the semiclassical limit, such calculations are governed by Euclidean (or, more generally, complex) saddle-point geometries. We emphasize here that, at least in simple contexts, the Euclidean approach suggests an alternative formulation in terms of the bulk quantum wavefunction. Since this alternate formulation can be directly applied to the real-time quantum theory, it is insensitive to subtleties involved in defining the Euclidean path integral. In particular, it can be consistent with many different choices of integration contour. Despite the fact that self-adjoint operators in the associated real-time quantum theory have real eigenvalues, we note that the bulk wavefunction encodes the Euclidean (or complex) Rényi geometries that would arise in any Euclidean path integral. As a result, for any given quantum state, the appropriate real-time path integral yields both Rényi entropies and associated complex saddle-point geometries that agree with Euclidean methods. After brief explanations of these general points, we use JT gravity to illustrate the associated real-time computations in detail.more » « less
-
Abstract Due to the failure of thermodynamics for low temperature near-extremal black holes, it has long been conjectured that a ‘thermodynamic mass gap’ exists between an extremal black hole and the lightest near-extremal state. For non-supersymmetric near-extremal black holes in Einstein gravity with an AdS 2 throat, no such gap was found. Rather, at that energy scale, the spectrum exhibits a continuum of states, up to non-perturbative corrections. In this paper, we compute the partition function of near-BPS black holes in supergravity where the emergent, broken, symmetry is PSU (1, 1|2). To reliably compute this partition function, we show that the gravitational path integral can be reduced to that of a N = 4 supersymmetric extension of the Schwarzian theory, which we define and exactly quantize. In contrast to the non-supersymmetric case, we find that black holes in supergravity have a mass gap and a large extremal black hole degeneracy consistent with the Bekenstein–Hawking area. Our results verify a plethora of string theory conjectures, concerning the scale of the mass gap and the counting of extremal micro-states.more » « less
-
A<sc>bstract</sc> The gravitational path integral can be used to compute the number of black hole states for a given energy window, or the free energy in a thermal ensemble. In this article we explain how to use the gravitational path integral to compute the separate number of bosonic and fermionic black hole microstates. We do this by comparing the partition function with and without the insertion of (−1)F. In particular we introduce a universal rotating black hole that contributes to the partition function in the presence of (−1)F. We study this problem for black holes in asymptotically flat space and in AdS, putting constraints on the high energy spectrum of holographic CFTs (not necessarily supersymmetric). Finally, we analyze wormhole contributions to related quantities.more » « less
An official website of the United States government

