Abstract Trees are suffering mortality across the globe as a result of drought, warming, and biotic attacks. The combined effects of warming and drought onin situtree chemical defenses against herbivory have not been studied to date. To address this, we transplanted mature piñon pine trees—a well-studied species that has undergone extensive drought and herbivore-related mortality—within their native woodland habitat and also to a hotter-drier habitat and measured monoterpene emissions and concentrations across the growing season. We hypothesized that greater needle temperatures in the hotter-drier site would increase monoterpene emission rates and consequently lower needle monoterpene concentrations, and that this temperature effect would dominate the seasonal pattern of monoterpene concentrations regardless of drought. In support of our hypothesis, needle monoterpene concentrations were lower across all seasons in trees transplanted to the hotter-drier site. Contrary to our hypothesis, basal emission rates (emission rates normalized to 30 °C and a radiative flux of 1000μmol m−2s−1) did not differ between sites. This is because an increase in emissions at the hotter-drier site from a 1.5 °C average temperature increase was offset by decreased emissions from greater plant water stress. High emission rates were frequently observed during June, which were not related to plant physiological or environmental factors but did not occur below pre-dawn leaf water potentials of −2 MPa, the approximate zero carbon assimilation point in piñon pine. Emission rates were also not under environmental or plant physiological control when pre-dawn leaf water potential was less than −2 MPa. Our results suggest that drought may override the effects of temperature on monoterpene emissions and tissue concentrations, and that the influence of drought may occur through metabolic processes sensitive to the overall needle carbon balance.
more »
« less
Drought impairs herbivore-induced volatile terpene emissions by ponderosa pine but not through constraints on newly assimilated carbon
Abstract Volatile terpenes serve multiple biological roles including tree resistance against herbivores. The increased frequency and severity of drought stress observed in forests across the globe may hinder trees from producing defense-related volatiles in response to biotic stress. To assess how drought-induced physiological stress alters volatile emissions alone and in combination with a biotic challenge, we monitored pre-dawn water potential, gas-exchange, needle terpene concentrations and terpene volatile emissions of ponderosa pine (Pinus ponderosa) saplings during three periods of drought and in response to simulated herbivory via methyl jasmonate application. Although 3-, 6- and 7-week drought treatments reduced net photosynthetic rates by 20, 89 and 105%, respectively, the magnitude of volatile fluxes remained generally resistant to drought. Herbivore-induced emissions, however, exhibited threshold-like behavior; saplings were unable to induce emissions above constitutive levels when pre-dawn water potentials were below the approximate zero-assimilation point. By comparing compositional shifts in emissions to needle terpene concentrations, we found evidence that drought effects on constitutive and herbivore-induced volatile flux and composition are primarily via constraints on the de novo fraction, suggesting that reduced photosynthesis during drought limits the carbon substrate available for de novo volatile synthesis. However, results from a subsequent 13CO2 pulse-chase labeling experiment then confirmed that both constitutive (<3% labeled) and herbivore-induced (<8% labeled) de novo emissions from ponderosa pine are synthesized predominantly from older carbon sources with little contribution from new photosynthates. Taken together, we provide evidence that in ponderosa pine, drought does not constrain herbivore-induced de novo emissions through substrate limitation via reduced photosynthesis, but rather through more sophisticated molecular and/or biophysical mechanisms that manifest as saplings reach the zero-assimilation point. These results highlight the importance of considering drought severity when assessing impacts on the herbivore-induced response and suggest that drought-altered volatile metabolism constrains induced emissions once a physiological threshold is surpassed.
more »
« less
- PAR ID:
- 10409837
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Tree Physiology
- ISSN:
- 1758-4469
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Stomatal closure during drought inhibits carbon uptake and may reduce a tree's defensive capacity. Limited carbon availability during drought may increase a tree's mortality risk, particularly if drought constrains trees' capacity to rapidly produce defenses during biotic attack.We parameterized a new model of conifer defense using physiological data on carbon reserves and chemical defenses before and after a simulated bark beetle attack in maturePinus edulisunder experimental drought. Attack was simulated using inoculations with a consistent bluestain fungus (Ophiostomasp.) ofIps confusus, the main bark beetle colonizing this tree, to induce a defensive response.Trees with more carbon reserves produced more defenses but measured phloem carbon reserves only accounted forc.23% of the induced defensive response. Our model predicted universal mortality if local reserves alone supported defense production, suggesting substantial remobilization and transport of stored resin or carbon reserves to the inoculation site.Our results show thatde novoterpene synthesis represents only a fraction of the total measured phloem terpenes inP. edulisfollowing fungal inoculation. Without direct attribution of phloem terpene concentrations to available carbon, many studies may be overestimating the scale and importance ofde novoterpene synthesis in a tree's induced defense response.more » « less
-
Abstract Climate warming in recent decades has negatively impacted forest health in the western United States. Here, we report on potential early warning signals (EWS) for drought‐related mortality derived from measurements of tree‐ring growth (ring width index; RWI) and carbon isotope discrimination (∆13C), primarily focused on ponderosa pine (Pinus ponderosa). Sampling was conducted in the southern Sierra Nevada Mountains, near the epicenter of drought severity and mortality associated with the 2012–2015 California drought and concurrent outbreak of western pine beetle (Dendroctonus brevicomis). At this site, we found that widespread mortality was presaged by five decades of increasing sensitivity (i.e., increased explained variation) of both tree growth and ∆13C to Palmer Drought Severity Index (PDSI). We hypothesized that increasing sensitivity of tree growth and ∆13C to hydroclimate constitute EWS that indicate an increased likelihood of widespread forest mortality caused by direct and indirect effects of drought. We then tested these EWS in additional ponderosa pine‐dominated forests that experienced varying mortality rates associated with the same California drought event. In general, drier sites showed increasing sensitivity of RWI to PDSI over the last century, as well as higher mortality following the California drought event compared to wetter sites. Two sites displayed evidence that thinning or fire events that reduced stand basal area effectively reversed the trend of increasing hydroclimate sensitivity. These comparisons indicate that reducing competition for soil water and/or decreasing bark beetle host tree density via forest management—particularly in drier regions—may buffer these forests against drought stress and associated mortality risk. EWS such as these could provide land managers more time to mitigate the extent or severity of forest mortality in advance of droughts. Substantial efforts at deploying additional dendrochronological research in concert with remote sensing and forest modeling will aid in forecasting of forest responses to continued climate warming.more » « less
-
Increasing wildfires in western North American conifer forests have led to debates surrounding the application of post-fire management practices. There is a lack of consensus on whether (and to what extent) post-fire management assists or hinders managers in achieving goals, particularly in under-studied regions like eastern ponderosa pine forests. This makes it difficult for forest managers to balance among competing interests. We contrast structural and community characteristics across unburned ponderosa pine forest, severely burned ponderosa pine forest, and severely burned ponderosa pine forest treated with post-fire management with respect to three management objectives: ponderosa pine regeneration, wildland fuels control, and habitat conservation. Ponderosa pine saplings were more abundant in treated burned sites than untreated burned sites, suggesting increases in tree regeneration following tree planting; however, natural regeneration was evident in both unburned and untreated burned sites. Wildland fuels management greatly reduced snags and coarse woody debris in treated burned sites. Understory cover measurements revealed bare ground and fine woody debris were more strongly associated with untreated burned sites, and greater levels of forbs and grass were more strongly associated with treated burned sites. Wildlife habitat was greatly reduced following post-fire treatments. There were no tree cavities in treated burned sites, whereas untreated burned sites had an average of 27 ± 7.68 cavities per hectare. Correspondingly, we found almost double the avian species richness in untreated burned sites compared to treated burned sites (22 species versus 12 species). Unburned forests and untreated burned areas had the same species richness, but hosted unique avian communities. Our results indicate conflicting outcomes with respect to management objectives, most evident in the clear costs to habitat conservation following post-fire management application.more » « less
-
Stable isotope ratios of carbon and oxygen, and mass percentage data of various components of ponderosa pine individuals in Big Cottonwood Canyon, Utah to accompany a manuscript published in Oecologia. </div>Two or three branches from five ponderosa pine individuals in Big Cottonwood Canyon, Utah were sampled in February, June, July, and September of 2019. Samples were processed to get mass percentages of sugars, starch, and cellulose in the branch and in needle segments. Needle values are presented in segments, with values for the bottom, middle, and top thirds of the needle. Carbon and oxygen stable isotope ratios were determined from ground bulk samples, as well as the sugar and cellulose fractions. Carbon isotope ratios are presented with respect to VPDB standard while oxygen isotope ratios are presented with respect to the VSMOW standard.</div>more » « less