skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Carbon and oxygen stable isotope ratios of ponderosa pine, Big Cottonwood Canyon, Utah, USA.
Stable isotope ratios of carbon and oxygen, and mass percentage data of various components of ponderosa pine individuals in Big Cottonwood Canyon, Utah to accompany a manuscript published in Oecologia. </div>Two or three branches from five ponderosa pine individuals in Big Cottonwood Canyon, Utah were sampled in February, June, July, and September of 2019. Samples were processed to get mass percentages of sugars, starch, and cellulose in the branch and in needle segments. Needle values are presented in segments, with values for the bottom, middle, and top thirds of the needle. Carbon and oxygen stable isotope ratios were determined from ground bulk samples, as well as the sugar and cellulose fractions. Carbon isotope ratios are presented with respect to VPDB standard while oxygen isotope ratios are presented with respect to the VSMOW standard.</div>  more » « less
Award ID(s):
1954660
PAR ID:
10324327
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
figshare
Date Published:
Subject(s) / Keyword(s):
Ecology Paleoclimatology
Format(s):
Medium: X Size: 49483 Bytes
Size(s):
49483 Bytes
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Recent evidence has revealed the emergence of a megadrought in southwestern North America since 2000. Megadroughts extend for at least 2 decades, making it challenging to identify such events until they are well established. Here, we examined tree-ring growth and stable isotope ratios in Pinus ponderosa at its driest niche edge to investigate whether trees growing near their aridity limit were sensitive to the megadrought climatic pre-conditions, and were capable of informing predictive efforts. During the decade before the megadrought, trees in four populations revealed increases in the cellulose δ13C content of earlywood, latewood, and false latewood, which, based on past studies are correlated with increased intrinsic water-use efficiency. However, radial growth and cellulose δ18O were not sensitive to pre-megadrought conditions. During the 2 decades preceding the megadrought, at all four sites, the changes in δ13C were caused by the high sensitivity of needle carbon and water exchange to drought trends in key winter months, and for three of the four sites during crucial summer months. Such pre-megadrought physiological sensitivity appears to be unique for trees near their arid range limit, as similar patterns were not observed in trees in ten reference sites located along a latitudinal gradient in the same megadrought domain, despite similar drying trends. Our results reveal the utility of tree-ring δ13C to reconstruct spatiotemporal patterns during the organizational phase of a megadrought, demonstrating that trees near the arid boundaries of a species’ distribution might be useful in the early detection of long-lasting droughts. 
    more » « less
  2. Abstract Oxygen and hydrogen stable isotope analyses of quartz and muscovite veins from the footwall of the Raft River detachment shear zone (Utah) provide insight into the hydrology and fluid‐rock interactions during ductile deformation. Samples were collected from veins containing 90%–100% quartz with orientations either at a high angle or sub‐parallel to the surrounding quartzite mylonite foliation. Stable isotope analysis was performed on 10 samples and compared with previous quartzite mylonite isotope data sets. The results indicate that the fluid present during deformation of the shear zone was meteoric in origin, with a δ2H value of approximately −100‰ and a δ18O value of approximately −13.7‰. Oxygen stable isotope O18O depletion correlates with the muscovite content of the analyzed rocks. Many of the analyzed samples in this and other studies show an apparent lack of equilibrium between the oxygen and hydrogen isotope systems, which can be explained by hydrogen and oxygen isotope exchange at varying fluid‐rock ratios. Our results suggest that the Raft River detachment shear zone had a low static fluid‐rock ratio (<0.1), yet experienced episodic influxes of fluids through semi‐brittle structures. This fluid was then expelled out into the surrounding mylonite following progressive shearing, causing further18O‐depletion and fluid‐related embrittlement. 
    more » « less
  3. The trilobite faunas that occur with the Steptoean Positive Isotope Carbon Excursion (SPICE) at Smithfield Canyon, Utah, have been reported, but not illustrated. Given the importance of the SPICE at this section for international correlations, the trilobites from new collections from the upper Nounan Dolomite to lower St. Charles Formation at Smithfield Canyon are reported herein and integrated with the previously reported taxa. Trilobite assemblages indicate that the upper Cedaria to the Ellipsocephaloides biozones (Miaolingian Series, Guzhangian Stage to Furongian Series, Jiangshanian Stage) are present stratigraphically below or above the SPICE. Some of the taxa reported herein may represent new species, but they are not represented by well-enough preserved specimens and are left in open nomenclature. However, Kingstonia smithfieldensis n. sp. and Bromella utahensis n. sp. are named on the basis of common and well-preserved specimens. New carbon isotope data from Smithfield Canyon from an overlapping section of the lower St. Charles Formation, that add to the overall shape of the SPICE curve, are presented. The new δ13C values above the Elvinia Biozone range from –0.36‰ to +1.5‰, confirming that the SPICE concludes within the Elvinia Biozone. 
    more » « less
  4. Abstract Volatile terpenes serve multiple biological roles including tree resistance against herbivores. The increased frequency and severity of drought stress observed in forests across the globe may hinder trees from producing defense-related volatiles in response to biotic stress. To assess how drought-induced physiological stress alters volatile emissions alone and in combination with a biotic challenge, we monitored pre-dawn water potential, gas-exchange, needle terpene concentrations and terpene volatile emissions of ponderosa pine (Pinus ponderosa) saplings during three periods of drought and in response to simulated herbivory via methyl jasmonate application. Although 3-, 6- and 7-week drought treatments reduced net photosynthetic rates by 20, 89 and 105%, respectively, the magnitude of volatile fluxes remained generally resistant to drought. Herbivore-induced emissions, however, exhibited threshold-like behavior; saplings were unable to induce emissions above constitutive levels when pre-dawn water potentials were below the approximate zero-assimilation point. By comparing compositional shifts in emissions to needle terpene concentrations, we found evidence that drought effects on constitutive and herbivore-induced volatile flux and composition are primarily via constraints on the de novo fraction, suggesting that reduced photosynthesis during drought limits the carbon substrate available for de novo volatile synthesis. However, results from a subsequent 13CO2 pulse-chase labeling experiment then confirmed that both constitutive (<3% labeled) and herbivore-induced (<8% labeled) de novo emissions from ponderosa pine are synthesized predominantly from older carbon sources with little contribution from new photosynthates. Taken together, we provide evidence that in ponderosa pine, drought does not constrain herbivore-induced de novo emissions through substrate limitation via reduced photosynthesis, but rather through more sophisticated molecular and/or biophysical mechanisms that manifest as saplings reach the zero-assimilation point. These results highlight the importance of considering drought severity when assessing impacts on the herbivore-induced response and suggest that drought-altered volatile metabolism constrains induced emissions once a physiological threshold is surpassed. 
    more » « less
  5. Cave carbonate minerals are an important terrestrial paleoclimate archive. A few studies have explored the potential for applying carbonate clumped isotope thermometry to speleothems as a tool for constraining past temperatures. To date, most papers utilizing this method have focused on mass-47 clumped isotope values (Δ47) at a single location and reported that cave carbonate minerals rarely achieve isotopic equilibrium, with kinetic isotope effects (KIEs) attributed to CO2 degassing. More recently, studies have shown that mass-47 and mass-48 CO2 from acid digested carbonate minerals (Δ47 and Δ48) can be used together to assess equilibrium and probe KIEs. Here, we examined 44 natural and synthetic modern cave carbonate mineral samples from 13 localities with varying environmental conditions (ventilation, water level, pCO2, temperature) for (dis)equilibrium using Δ47-Δ48 values, in concert with traditional stable carbon (δ13C) and oxygen (δ18O) isotope ratios. Data showed that 19 of 44 samples exhibited Δ47-Δ48 values indistinguishable from isotopic equilibrium, and 18 (95 %) of these samples yield Δ47-predicted temperatures within error of measured modern temperatures. Conversely, 25 samples exhibited isotopic disequilibria, 13 of which yield erroneous temperature estimates. Within some speleothemsamples, we find Δ47-Δ48 values consistent with CO2 degassing effects, however, the majority of sampleswith KIEs are consistent with other processes being dominant. We hypothesize that these values reflect isotopicbuffering effects on clumped isotopes that can be considerable and cannot be overlooked. Using a Raleigh Distillation Model, we examined carbon and oxygen isotope exchange trajectories and their relationships with dual clumped isotope disequilibria. Carbon isotope exchange is associated with depletion of both Δ47 and Δ48 relative to equilibrium, while oxygen isotope exchange is associated with enrichment of both Δ47 and Δ48 relative to equilibrium. Cave rafts collected from proximate locations in Mexico exhibit the largest averagedepartures from equilibrium (ΔΔ47 = − 0.032 ± 0.007, ΔΔ48 = − 0.104 ± 0.035, where ΔΔi is the measured value – the equilibrium value). This study shows how the Δ47-Δ48 dual carbonate clumped isotope framework can be applied to a variety of tcave carbonate mineral samples, enabling identification of isotopic equilibria and therefore quantitative application of clumped isotope thermometry for paleoclimate reconstruction, or alternatively, constraining the mechanisms of kinetic effects. 
    more » « less