skip to main content


This content will become publicly available on May 1, 2024

Title: Broadband Electrical Spectroscopy to Distinguish Single-Cell Ca2+ Changes Due to Ionomycin Treatment in a Skeletal Muscle Cell Line
Many skeletal muscle diseases such as muscular dystrophy, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and sarcopenia share the dysregulation of calcium (Ca2+) as a key mechanism of disease at a cellular level. Cytosolic concentrations of Ca2+ can signal dysregulation in organelles including the mitochondria, nucleus, and sarcoplasmic reticulum in skeletal muscle. In this work, a treatment is applied to mimic the Ca2+ increase associated with these atrophy-related disease states, and broadband impedance measurements are taken for single cells with and without this treatment using a microfluidic device. The resulting impedance measurements are fitted using a single-shell circuit simulation to show calculated electrical dielectric property contributions based on these Ca2+ changes. From this, similar distributions were seen in the Ca2+ from fluorescence measurements and the distribution of the S-parameter at a single frequency, identifying Ca2+ as the main contributor to the electrical differences being identified. Extracted dielectric parameters also showed different distribution patterns between the untreated and ionomycin-treated groups; however, the overall electrical parameters suggest the impact of Ca2+-induced changes at a wider range of frequencies.  more » « less
Award ID(s):
1809623
NSF-PAR ID:
10409841
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Sensors
Volume:
23
Issue:
9
ISSN:
1424-8220
Page Range / eLocation ID:
4358
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hypoxia‐induced polymerization of sickle hemoglobin and the related ion diffusion across cell membrane can lead to changes in cell dielectric properties, which can potentially serve as label‐free, diagnostic biomarkers for sickle cell disease. This article presents a microfluidic‐based approach with on‐chip gas control for the impedance spectroscopy of suspended cells within the frequency range of 40 Hz to 110 MHz. A comprehensive bioimpedance of sickle cells under both normoxia and hypoxia is achieved rapidly (within ∼7 min) and is appropriated by small sample volumes (∼2.5 μL). Analysis of the sensing modeling is performed to obtain optimum conditions for dielectric spectroscopy of sickle cell suspensions and for extraction of single cell properties from the measured impedance spectra. The results of sickle cells show that upon hypoxia treatment, cell interior permittivity and conductivity increase, while cell membrane capacitance decreases. Moreover, the relative changes in cell dielectric parameters are found to be dependent on the sickle and fetal hemoglobin levels. In contrast, the changes in normal red blood cells between the hypoxia and normoxia states are unnoticeable. The results of sickle cells may serve as a reference to design dielectrophoresis‐based cell sorting and electrodeformation testing devices that require cell dielectric characteristics as input parameters. The demonstrated method for dielectric characterization of single cells from the impedance spectroscopy of cell suspensions can be potentially applied to other cell types and under varied gas conditions.

     
    more » « less
  2. Abstract

    This article presents the development and testing of a low‐cost (<$60), portable, electrical impedance‐based microflow cytometer for single‐cell analysis under a controlled oxygen microenvironment. The system is based on an AD5933 impedance analyzer chip, a microfluidic chip, and an Arduino microcontroller operated by a custom Android application. A representative case study on human red blood cells (RBCs) affected by sickle cell disease is conducted to demonstrate the capability of the cytometry system. Impedance values of sickle blood samples exhibit remarkable deviations from the common reference line obtained from two normal blood samples. Such deviation is quantified by a conformity score, which allows for the measurement of intrapatient and interpatient variations of sickle cell disease. A low conformity score under oxygenated conditions or drastically different conformity scores between oxygenated and deoxygenated conditions can be used to differentiate a sickle blood sample from normal. Furthermore, an equivalent circuit model of a suspended biological cell is used to interpret the electrical impedance of single flowing RBCs. In response to hypoxia treatment, all samples, regardless of disease state, exhibit significant changes in at least one single‐cell electrical property, that is, cytoplasmic resistance and membrane capacitance. The overall response to hypoxia is less in normal cells than those affected by sickle cell disease, where the change in membrane capacitance varies from −23% to seven times as compared with −17% in normal cells. The results reported in this article suggest that the developed method of testing demonstrates the potential application for a low‐cost screening technique for sickle cell disease and other diseases in the field and low‐resource settings. The developed system and methodology can be extended to analyze cellular response to hypoxia in other cell types.

     
    more » « less
  3. Key points

    Previous studies in fetuses with intrauterine growth restriction (IUGR) have shown that adrenergic dysregulation was associated with low insulin concentrations and greater insulin sensitivity.

    Although whole‐body glucose clearance is normal, 1‐month‐old lambs with IUGR at birth have higher rates of hindlimb glucose uptake, which may compensate for myocyte deficiencies in glucose oxidation.

    Impaired glucose‐stimulated insulin secretion in IUGR lambs is due to lower intra‐islet insulin availability and not from glucose sensing.

    We investigated adrenergic receptor (ADR) β2 desensitization by administering oral ADRβ modifiers for the first month after birth to activate ADRβ2 and antagonize ADRβ1/3. In IUGR lambs ADRβ2 activation increased whole‐body glucose utilization rates and insulin sensitivity but had no effect on isolated islet or myocyte deficiencies.

    IUGR establishes risk for developing diabetes. In IUGR lambs we identified disparities in key aspects of glucose‐stimulated insulin secretion and insulin‐stimulated glucose oxidation, providing new insights into potential mechanisms for this risk.

    Abstract

    Placental insufficiency causes intrauterine growth restriction (IUGR) and disturbances in glucose homeostasis with associated β adrenergic receptor (ADRβ) desensitization. Our objectives were to measure insulin‐sensitive glucose metabolism in neonatal lambs with IUGR and to determine whether daily treatment with ADRβ2 agonist and ADRβ1/β3 antagonists for 1 month normalizes their glucose metabolism. Growth, glucose‐stimulated insulin secretion (GSIS) and glucose utilization rates (GURs) were measured in control lambs, IUGR lambs and IUGR lambs treated with adrenergic receptor modifiers: clenbuterol atenolol and SR59230A (IUGR‐AR). In IUGR lambs, islet insulin content and GSIS were less than in controls; however, insulin sensitivity and whole‐body GUR were not different from controls. Of importance, ADRβ2 stimulation with β1/β3 inhibition increases both insulin sensitivity and whole‐body glucose utilization in IUGR lambs. In IUGR and IUGR‐AR lambs, hindlimb GURs were greater but fractional glucose oxidation rates andex vivoskeletal muscle glucose oxidation rates were lower than controls. Glucose transporter 4 (GLUT4) was lower in IUGR and IUGR‐AR skeletal muscle than in controls but GLUT1 was greater in IUGR‐AR. ADRβ2, insulin receptor, glycogen content and citrate synthase activity were similar among groups. In IUGR and IUGR‐AR lambs heart rates were greater, which was independent of cardiac ADRβ1 activation. We conclude that targeted ADRβ2 stimulation improved whole‐body insulin sensitivity but minimally affected defects in GSIS and skeletal muscle glucose oxidation. We show that risk factors for developing diabetes are independent of postnatal catch‐up growth in IUGR lambs as early as 1 month of age and are inherent to the islets and myocytes.

     
    more » « less
  4. Abstract Background Titinopathies are inherited muscular diseases triggered by genetic mutations in the titin gene. Muscular dystrophy with myositis ( mdm ) is one such disease caused by a LINE repeat insertion, leading to exon skipping and an 83-amino acid residue deletion in the N2A-PEVK region of mouse titin. This region has been implicated in a number of titin—titin ligand interactions, hence are important for myocyte signaling and health. Mice with this mdm mutation develop a severe and progressive muscle degeneration. The range of phenotypic differences observed in mdm mice shows that the deletion of this region induces a cascade of transcriptional changes extending to numerous signaling pathways affected by the titin filament. Previous research has focused on correlating phenotypic differences with muscle function in mdm mice. These studies have provided understanding of the downstream physiological effects resulting from the mdm mutation but only provide insights on processes that can be physiologically observed and measured. We used differential gene expression (DGE) to compare the transcriptomes of extensor digitorum longus (EDL), psoas and soleus muscles from wild-type and mdm mice to develop a deeper understand of these tissue-specific responses. Results The overall expression pattern observed shows a well-differentiated transcriptional signature in mdm muscles compared to wild type. Muscle-specific clusters observed within the mdm transcriptome highlight the level of variability of each muscle to the deletion. Differential gene expression and weighted gene co-expression network analysis showed a strong directional response in oxidative respiration-associated mitochondrial genes, which aligns with the poor shivering and non-shivering thermogenesis previously observed. Sln, which is a marker associated with shivering and non-shivering thermogenesis, showed the strongest expression change in fast-fibered muscles. No drastic changes in MYH expression levels were reported, which indicated an absence of major fiber-type switching events. Overall expression shifts in MYH isoforms, MARPs, and extracellular matrix associated genes demonstrated the transcriptional complexity associated with mdm mutation. The expression alterations in mitochondrial respiration and metabolism related genes in the mdm muscle dominated over other transcriptomic changes, and likely account for the late stage cellular responses in the mdm muscles. Conclusions We were able to demonstrate that the complex nature of mdm mutation extends beyond a simple rearrangement in titin gene. EDL, psoas and soleus exemplify unique response modes observed in skeletal muscles with mdm mutation. Our data also raises the possibility that failure to maintain proper energy homeostasis in mdm muscles may contribute to the pathogenesis of the degenerative phenotype in mdm mice. Understanding the full disease-causing molecular cascade is difficult using bulk RNA sequencing techniques due to intricate nature of the disease. The development of the mdm phenotype is temporally and spatially regulated, hence future studies should focus on single fiber level investigations. 
    more » « less
  5. Extensive damage to skeletal muscle tissue due to volumetric muscle loss (VML) is beyond the inherent regenerative capacity of the body, and results in permanent functional debilitation. Current clinical treatments fail to fully restore native muscle function. Recently, cell-based therapies have emerged as a promising approach to promote skeletal muscle regeneration following injury and/or disease. Stem cell populations, such as muscle stem cells, mesenchymal stem cells and induced pluripotent stem cells (iPSCs), have shown a promising capacity for muscle differentiation. Support cells, such as endothelial cells, nerve cells or immune cells, play a pivotal role in providing paracrine signaling cues for myogenesis, along with modulating the processes of inflammation, angiogenesis and innervation. The efficacy of cell therapies relies on the provision of instructive microenvironmental cues and appropriate intercellular interactions. This review describes the recent developments of cell-based therapies for the treatment of VML, with a focus on preclinical testing and future trends in the field. 
    more » « less