Abstract We confirm the planetary nature of TOI-5344 b as a transiting giant exoplanet around an M0-dwarf star. TOI-5344 b was discovered with the Transiting Exoplanet Survey Satellite photometry and confirmed with ground-based photometry (the Red Buttes Observatory 0.6 m telescope), radial velocity (the Habitable-zone Planet Finder), and speckle imaging (the NN-Explore Exoplanet Stellar Speckle Imager). TOI-5344 b is a Saturn-like giant planet (ρ= 0.80 g cm−3) with a planetary radius of 9.7 ± 0.5R⊕(0.87 ± 0.04RJup) and a planetary mass of (0.42 ). It has an orbital period of days and an orbital eccentricity of . We measure a high metallicity for TOI-5344 of [Fe/H] = 0.48 ± 0.12, where the high metallicity is consistent with expectations from formation through core accretion. We compare the metallicity of the M-dwarf hosts of giant exoplanets to that of M-dwarf hosts of nongiants (≲8R⊕). While the two populations appear to show different metallicity distributions, quantitative tests are prohibited by various sample caveats.
more »
« less
TOI-5375 B: A Very Low Mass Star at the Hydrogen-burning Limit Orbiting an Early M-type Star* †
Abstract The Transiting Exoplanet Survey Satellite (TESS) mission detected a companion orbiting TIC 71268730, categorized it as a planet candidate, and designated the system TOI-5375. Our follow-up analysis using radial-velocity data from the Habitable-zone Planet Finder, photometric data from Red Buttes Observatory, and speckle imaging with NN-EXPLORE Exoplanet Stellar Speckle Imager determined that the companion is a very low mass star near the hydrogen-burning mass limit with a mass of 0.080 ± 0.002M☉(83.81 ± 2.10MJ), a radius of (1.0841 ), and brightness temperature of 2600 ± 70 K. This object orbits with a period of 1.721553 ± 0.000001 days around an early M dwarf star (0.62 ± 0.016M☉). TESS photometry shows regular variations in the host star’s TESS light curve, which we interpreted as an activity-induced variation of ∼2%, and used this variability to measure the host star’s stellar rotation period of days. The TOI-5375 system provides tight constraints on stellar models of low-mass stars at the hydrogen-burning limit and adds to the population in this important region.
more »
« less
- PAR ID:
- 10409902
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astronomical Journal
- Volume:
- 165
- Issue:
- 5
- ISSN:
- 0004-6256
- Format(s):
- Medium: X Size: Article No. 218
- Size(s):
- Article No. 218
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We present the stellar population properties of 69 short gamma-ray burst (GRB) host galaxies, representing the largest uniformly modeled sample to date. Using theProspectorstellar population inference code, we jointly fit photometry and/or spectroscopy of each host galaxy. We find a population median redshift of (68% confidence), including nine photometric redshifts atz≳ 1. We further find a median mass-weighted age oftm= Gyr, stellar mass of log(M*/M⊙) = , star formation rate of SFR = M⊙yr−1, stellar metallicity of log(Z*/Z⊙) = , and dust attenuation of mag (68% confidence). Overall, the majority of short GRB hosts are star-forming (≈84%), with small fractions that are either transitioning (≈6%) or quiescent (≈10%); however, we observe a much larger fraction (≈40%) of quiescent and transitioning hosts atz≲ 0.25, commensurate with galaxy evolution. We find that short GRB hosts populate the star-forming main sequence of normal field galaxies, but do not include as many high-mass galaxies as the general galaxy population, implying that their binary neutron star (BNS) merger progenitors are dependent on a combination of host star formation and stellar mass. The distribution of ages and redshifts implies a broad delay-time distribution, with a fast-merging channel atz> 1 and a decreased neutron star binary formation efficiency from high to low redshifts. If short GRB hosts are representative of BNS merger hosts within the horizon of current gravitational wave detectors, these results can inform future searches for electromagnetic counterparts. All of the data and modeling products are available on the Broadband Repository for Investigating Gamma-ray burst Host Traits website.more » « less
-
Abstract The cluster mass–richness relation (MRR) is an observationally efficient and potentially powerful cosmological tool for constraining the matter density Ωmand the amplitude of fluctuationsσ8using the cluster abundance technique. We derive the MRR relation usingGalWCat19, a publicly available galaxy cluster catalog we created from the Sloan Digital Sky Survey-DR13 spectroscopic data set. In the MRR, cluster mass scales with richness as . We find that the MRR we derive is consistent with both the IllustrisTNG and mini-Uchuu cosmological numerical simulations, with a slope ofβ≈ 1. We use the MRR we derived to estimate cluster masses from theGalWCat19catalog, which we then use to set constraints on Ωmandσ8. Utilizing the all-member MRR, we obtain constraints of Ωm= andσ8= , and utilizing the red member MRR only, we obtain Ωm= andσ8= . Our constraints on Ωmandσ8are consistent and very competitive with the Planck 2018 results.more » « less
-
A theoretical analysis on crack formation and propagation was performed based on the coupling between the electrochemical process, classical elasticity, and fracture mechanics. The chemical potential of oxygen, thus oxygen partial pressure, at the oxygen electrode-electrolyte interface ( ) was investigated as a function of transport properties, electrolyte thickness and operating conditions (e.g., steam concentration, constant current, and constant voltage). Our analysis shows that: a lower ionic area specific resistance (ASR), and a higher electronic ASR ( ) of the oxygen electrode/electrolyte interface are in favor of suppressing crack formation. The thus local pO2, are sensitive towards the operating parameters under galvanostatic or potentiostatic electrolysis. Constant current density electrolysis provides better robustness, especially at a high current density with a high steam content. While constant voltage electrolysis leads to greater variations of Constant current electrolysis, however, is not suitable for an unstable oxygen electrode because can reach a very high value with a gradually increased A crack may only occur under certain conditions whenmore » « less
-
Abstract We report the discovery of MAGAZ3NE J095924+022537, a spectroscopically confirmed protocluster at around a spectroscopically confirmedUVJ-quiescent ultramassive galaxy (UMG; ) in the COSMOS UltraVISTA field. We present a total of 38 protocluster members (14 spectroscopic and 24 photometric), including the UMG. Notably, and in marked contrast to protoclusters previously reported at this epoch that have been found to contain predominantly star-forming members, we measure an elevated fraction of quiescent galaxies relative to the coeval field ( versus for galaxies with stellar massM⋆≥ 1011M⊙). This high quenched fraction provides a striking and important counterexample to the seeming ubiquitousness of star-forming galaxies in protoclusters atz> 2 and suggests, rather, that protoclusters exist in a diversity of evolutionary states in the early universe. We discuss the possibility that we might be observing either “early mass quenching” or nonclassical “environmental quenching.” We also present the discovery of MAGAZ3NE J100028+023349, a second spectroscopically confirmed protocluster, at a very similar redshift of . We present a total of 20 protocluster members, 12 of which are photometric and eight spectroscopic including a poststarburst UMG ( ). Protoclusters MAGAZ3NE J0959 and MAGAZ3NE J1000 are separated by 18′ on the sky (35 comoving Mpc), in good agreement with predictions from simulations for the size of “Coma”-type cluster progenitors at this epoch. It is highly likely that the two UMGs are the progenitors of Brightest Cluster Galaxies seen in massive virialized clusters at lower redshift.more » « less
An official website of the United States government
