skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Simultaneous Suspension Control and Energy Harvesting Through Novel Design and Control of a New Nonlinear Energy Harvesting Shock Absorber
Award ID(s):
2045436
PAR ID:
10410007
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Vehicular Technology
Volume:
71
Issue:
6
ISSN:
0018-9545
Page Range / eLocation ID:
6073 to 6087
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Controlling and manipulating elastic/acoustic waves via artificially structured metamaterials, phononic crystals, and metasurfaces have gained an increasing research interest in the last decades. Unlike others, a metasurface is a single layer in the host medium with an array of subwavelength-scaled patterns introducing an abrupt phase shift in the wave propagation path. In this study, an elastic metasurface composed of an array of slender beam resonators is proposed to control the elastic wavefront of low-frequency flexural waves. The phase gradient based on Snell’s law is achieved by tailoring the thickness of thin beam resonators connecting two elastic host media. Through analytical and numerical models, the phase-modulated metasurfaces are designed and verified to accomplish three dynamic wave functions, namely, deflection, non-paraxial propagation, and focusing. An oblique incident wave is also demonstrated to show the versatility of the proposed design for focusing of wave energy incident from multiple directions. Experimentally measured focusing metasurface has nearly three times wave amplification at the designed focal point which validates the design and theoretical models. Furthermore, the focusing metasurface is exploited for low-frequency energy harvesting and the piezoelectric harvester is improved by almost nine times in terms of the harvested power output as compared to the baseline harvester on the pure plate without metasurface. 
    more » « less
  2. null (Ed.)
  3. As technology advances and cities become more innovative, the need to harvest energy to power intelligent devices at remote locations, such as wireless sensors, is increasing. This paper focuses on studying and simulating an energy management system (EMS) for energy harvesting with a battery and a supercapacitor for low power applications. Lithium-ion batteries are the primary energy storage source for low power applications due to their high energy density and efficiency. On the other hand, the supercapacitors excel in fast charge and discharge. Furthermore, supercapacitors tolerate high currents due to their low equivalent series resistance (ESR). The supercapacitor in the system increases the time response of the power delivery to the load, and it also absorbs the high currents in the system. Moreover, the supercapacitor covers short-time load demand due to the fluctuation of the renewable source. The EMS monitors the proposed system to maintain power to the load either from the renewable source or the energy storage. The power flow of the energy storage is controlled via DC-DC bidirectional converters. The lithium-ion battery is charged via a constant current (CC) using a sliding mode controller (SMC) and a constant voltage (CV) via a typical PI controller. The response of the SMC current controller is compared with PI and Fuzzy current controller. Furthermore, the performance of a system having and not having a supercapacitor is compared. Finally, MATLAB modeling system simulation and experimental implementation results are analyzed and presented. 
    more » « less
  4. null (Ed.)