skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the connectedness principle and dual complexes for generalized pairs
Abstract Let $(X,B)$ be a pair, and let $$f \colon X \rightarrow S$$ be a contraction with $$-({K_{X}} + B)$$ nef over S . A conjecture, known as the Shokurov–Kollár connectedness principle, predicts that $$f^{-1} (s) \cap \operatorname {\mathrm {Nklt}}(X,B)$$ has at most two connected components, where $$s \in S$$ is an arbitrary schematic point and $$\operatorname {\mathrm {Nklt}}(X,B)$$ denotes the non-klt locus of $(X,B)$ . In this work, we prove this conjecture, characterizing those cases in which $$\operatorname {\mathrm {Nklt}}(X,B)$$ fails to be connected, and we extend these same results also to the category of generalized pairs. Finally, we apply these results and the techniques to the study of the dual complex for generalized log Calabi–Yau pairs, generalizing results of Kollár–Xu [ Invent. Math . 205 (2016), 527–557] and Nakamura [ Int. Math. Res. Not. IMRN 13 (2021), 9802–9833].  more » « less
Award ID(s):
1801851 1952522
PAR ID:
10410254
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
11
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigate a conjecture due to Haefliger and Thurston in the context of foliated manifold bundles. In this context, Haefliger-Thurston’s conjecture predicts that every M M -bundle over a manifold B B where dim ⁡<#comment/> ( B ) ≤<#comment/> dim ⁡<#comment/> ( M ) \operatorname {dim}(B)\leq \operatorname {dim}(M) is cobordant to a flat M M -bundle. In particular, we study the bordism class of flat M M -bundles over low dimensional manifolds, comparing a finite dimensional Lie group G G with D i f f 0 ( G ) \mathrm {Diff}_0(G)
    more » « less
  2. Let G G be a reductive group, and let X X be a smooth quasi-projective complex variety. We prove that any G G -irreducible, G G -cohomologically rigid local system on X X with finite order abelianization and quasi-unipotent local monodromies is integral. This generalizes work of Esnault and Groechenig [Selecta Math. (N. S. ) 24 (2018), pp. 4279–4292; Acta Math. 225 (2020), pp. 103–158] when G = G L n G= \mathrm {GL}_n , and it answers positively a conjecture of Simpson [Inst. Hautes Études Sci. Publ. Math. 75 (1992), pp. 5–95; Inst. Hautes Études Sci. Publ. Math. 80 (1994), pp. 5–79] for G G -cohomologically rigid local systems. Along the way we show that the connected component of the Zariski-closure of the monodromy group of any such local system is semisimple; this moreover holds when we relax cohomological rigidity to rigidity. 
    more » « less
  3. Suppose f ∈ K [ x ] f \in K[x] is a polynomial. The absolute Galois group of K K acts on the preimage tree T \mathrm {T} of 0 0 under f f . The resulting homomorphism ϕ f : Gal K → Aut ⁡ T \phi _f\colon \operatorname {Gal}_K \to \operatorname {Aut} \mathrm {T} is called the arboreal Galois representation. Odoni conjectured that for all Hilbertian fields K K there exists a polynomial f f for which ϕ f \phi _f is surjective. We show that this conjecture is false. 
    more » « less
  4. Let E / Q E/\mathbf {Q} be an elliptic curve and let p p be an odd prime of good reduction for E E . Let K K be an imaginary quadratic field satisfying the classical Heegner hypothesis and in which p p splits. The goal of this paper is two-fold: (1) we formulate a p p -adic BSD conjecture for the p p -adic L L -function L p B D P L_\mathfrak {p}^{\mathrm {BDP}} introduced by Bertolini–Darmon–Prasanna [Duke Math. J. 162 (2013), pp. 1033–1148]; and (2) for an algebraic analogue F p ¯<#comment/> B D P F_{\overline {\mathfrak {p}}}^{\mathrm {BDP}} of L p B D P L_\mathfrak {p}^{\mathrm {BDP}} , we show that the “leading coefficient” part of our conjecture holds, and that the “order of vanishing” part follows from the expected “maximal non-degeneracy” of an anticyclotomic p p -adic height. In particular, when the Iwasawa–Greenberg Main Conjecture ( F p ¯<#comment/> B D P ) = ( L p B D P ) (F_{\overline {\mathfrak {p}}}^{\mathrm {BDP}})=(L_\mathfrak {p}^{\mathrm {BDP}}) is known, our results determine the leading coefficient of L p B D P L_{\mathfrak {p}}^{\mathrm {BDP}} at T = 0 T=0 up to a p p -adic unit. Moreover, by adapting the approach of Burungale–Castella–Kim [Algebra Number Theory 15 (2021), pp. 1627–1653], we prove the main conjecture for supersingular primes p p under mild hypotheses. In the p p -ordinary case, and under some additional hypotheses, similar results were obtained by Agboola–Castella [J. Théor. Nombres Bordeaux 33 (2021), pp 629–658], but our method is new and completely independent from theirs, and apply to all good primes. 
    more » « less
  5. Let X =G/Γ, where G is a connected Lie group and Γ is a lattice in G. Let O be an open subset of X, and let F = {g_t : t ≥ 0} be a one-parameter subsemigroup of G. Consider the set of points in X whose F-orbit misses O; it has measure zero if the flow is ergodic. It has been conjectured that, assuming ergodicity, this set has Hausdorff dimension strictly smaller than the dimension of X. This conjecture has been proved when X is compact or when G is a simple Lie group of real rank 1, or, most recently, for certain flows on the space of lattices. In this paper we prove this conjecture for arbitrary Addiagonalizable flows on irreducible quotients of semisimple Lie groups. The proof uses exponential mixing of the flow together with the method of integral inequalities for height functions on G/Γ. We also derive an application to jointly Dirichlet-Improvable systems of linear forms. 
    more » « less