skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dimension drop for diagonalizable flows on homogeneous spaces
Let X =G/Γ, where G is a connected Lie group and Γ is a lattice in G. Let O be an open subset of X, and let F = {g_t : t ≥ 0} be a one-parameter subsemigroup of G. Consider the set of points in X whose F-orbit misses O; it has measure zero if the flow is ergodic. It has been conjectured that, assuming ergodicity, this set has Hausdorff dimension strictly smaller than the dimension of X. This conjecture has been proved when X is compact or when G is a simple Lie group of real rank 1, or, most recently, for certain flows on the space of lattices. In this paper we prove this conjecture for arbitrary Addiagonalizable flows on irreducible quotients of semisimple Lie groups. The proof uses exponential mixing of the flow together with the method of integral inequalities for height functions on G/Γ. We also derive an application to jointly Dirichlet-Improvable systems of linear forms.  more » « less
Award ID(s):
2155111
PAR ID:
10612009
Author(s) / Creator(s):
;
Publisher / Repository:
AIMS
Date Published:
Journal Name:
Journal of Modern Dynamics
Volume:
20
Issue:
0
ISSN:
1930-5311
Page Range / eLocation ID:
441 to 478
Subject(s) / Keyword(s):
Flows on homogeneous spaces, dimension drop, exponential mixing, effective equidistribution, Margulis functions
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let X = G/Γ, where G is a Lie group and Γ is a uniform lattice in G, and let O be an open subset of X. We give an upper estimate for the Hausdorff dimension of the set of points whose trajectories escape O on average with frequency δ, where 0 < δ ≤ 1. 
    more » « less
  2. Let 𝑋=𝐺/Γ, where G is a Lie group and Γ is a lattice in G, and let U be a subset of X whose complement is compact. We use the exponential mixing results for diagonalizable flows on X to give upper estimates for the Hausdorff dimension of the set of points whose trajectories miss U. This extends a recent result of Kadyrov et al. (Dyn Syst 30(2):149–157, 2015) and produces new applications to Diophantine approximation, such as an upper bound for the Hausdorff dimension of the set of weighted uniformly badly approximable systems of linear forms, generalizing an estimate due to Broderick and Kleinbock (Int J Number Theory 11(7):2037–2054, 2015). 
    more » « less
  3. Abstract Let G be a Lie group, let $$\Gamma \subset G$$ be a discrete subgroup, let $$X=G/\Gamma $$ and let f be an affine map from X to itself. We give conditions on a submanifold Z of X that guarantee that the set of points $$x\in X$$ with f -trajectories avoiding Z is hyperplane absolute winning (a property which implies full Hausdorff dimension and is stable under countable intersections). A similar result is proved for one-parameter actions on X . This has applications in constructing exceptional geodesics on locally symmetric spaces and in non-density of the set of values of certain functions at integer points. 
    more » « less
  4. Let G G be a reductive group, and let X X be a smooth quasi-projective complex variety. We prove that any G G -irreducible, G G -cohomologically rigid local system on X X with finite order abelianization and quasi-unipotent local monodromies is integral. This generalizes work of Esnault and Groechenig [Selecta Math. (N. S. ) 24 (2018), pp. 4279–4292; Acta Math. 225 (2020), pp. 103–158] when G = G L n G= \mathrm {GL}_n , and it answers positively a conjecture of Simpson [Inst. Hautes Études Sci. Publ. Math. 75 (1992), pp. 5–95; Inst. Hautes Études Sci. Publ. Math. 80 (1994), pp. 5–79] for G G -cohomologically rigid local systems. Along the way we show that the connected component of the Zariski-closure of the monodromy group of any such local system is semisimple; this moreover holds when we relax cohomological rigidity to rigidity. 
    more » « less
  5. null (Ed.)
    Let C be a class of graphs closed under taking induced subgraphs. We say that C has the clique-stable set separation property if there exists c ∈ N such that for every graph G ∈ C there is a collection P of partitions (X, Y ) of the vertex set of G with |P| ≤ |V (G)| c and with the following property: if K is a clique of G, and S is a stable set of G, and K ∩ S = ∅, then there is (X, Y ) ∈ P with K ⊆ X and S ⊆ Y . In 1991 M. Yannakakis conjectured that the class of all graphs has the clique-stable set separation property, but this conjecture was disproved by M. G¨o¨os in 2014. Therefore it is now of interest to understand for which classes of graphs such a constant c exists. In this paper we define two infinite families S, K of graphs and show that for every S ∈ S and K ∈ K, the class of graphs with no induced subgraph isomorphic to S or K has the clique-stable set separation property. 
    more » « less