skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Functional Morphology of the Urohyal Shunt for Symmetrical and Asymmetrical Ventilation in the Flatfish, Isopsetta isolepis
Abstract Flatfishes are benthic fishes that are well known for their ability to bury in the sediment, making the transition from above to below the sediment in a matter of seconds. Laterally flattened bodies allow flatfishes to lay flush against the substrate, a behavior facilitated by having an asymmetrical neurocranium with two eyes on one side of the head. Despite neurocranial asymmetry, their gill chambers are highly symmetrical. Additionally, most flatfishes have a uniquely shaped urohyal bone that forms passageway for water to travel ventrally between the “eyed-side” and “blind-side” gill chambers. Our study examines whether the kinematics and pressures generated by the gill chambers are also symmetrical during breathing above and below the sediment and during rapid burial in sediment. We studied Isopsetta isolepis individuals using sonomicrometry crystals to measure the changes in positions of the opercle bones relative to the urohyal and pressure transducers to record gill chamber pressures during burial. We conclude I. isolepis exhibit both symmetrical and asymmetrical breathing above and below the sediment. Pressures and movements were highly asymmetrical during burial jetting. We observed motions that indicate that the urohyal is an active shunt to allow passage of water between the eyed to the blind-side gill chambers.  more » « less
Award ID(s):
1852096 2000268
PAR ID:
10410274
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Integrative and Comparative Biology
Volume:
62
Issue:
4
ISSN:
1540-7063
Page Range / eLocation ID:
897 to 907
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In hypoxia, air-breathing fish obtain O2from the air but continue to excrete CO2into the water. Consequently, it is believed that some O2obtained by air-breathing is lost at the gills in hypoxic water.Pangasionodon hypophthalmusis an air-breathing catfish with very large gills from the Mekong River basin where it is cultured in hypoxic ponds. To understand howP. hypophthalmuscan maintain high growth in hypoxia with the presumed O2loss, we quantified respiratory gas exchange in air and water. In severe hypoxia (PO2: ≈ 1.5 mmHg), it lost a mere 4.9% of its aerial O2uptake, while maintaining aquatic CO2excretion at 91% of the total. Further, even small elevations in water PO2rapidly reduced this minor loss. Charting the cardiovascular bauplan across the branchial basket showed four ventral aortas leaving the bulbus arteriosus, with the first and second gill arches draining into the dorsal aorta while the third and fourth gill arches drain into the coeliacomesenteric artery supplying the gut and the highly trabeculated respiratory swim-bladder. Substantial flow changes across these two arterial systems from normoxic to hypoxic water were not found. We conclude that the proposed branchial oxygen loss in air-breathing fish is likely only a minor inefficiency. 
    more » « less
  2. null (Ed.)
    ABSTRACT We perform analysis of the 3D kinematics of Milky Way disc stars in mono-age populations. We focus on stars between Galactocentric distances of R = 6 and 14  kpc, selected from the combined LAMOST Data Release 4 (DR4) red clump giant stars and Gaia DR2 proper motion catalogue. We confirm the 3D asymmetrical motions of recent works and provide time tagging of the Galactic outer disc asymmetrical motions near the anticentre direction out to Galactocentric distances of 14 kpc. Radial Galactocentric motions reach values up to 10 km s−1, depending on the age of the population, and present a north–south asymmetry in the region corresponding to density and velocity substructures that were sensitive to the perturbations in the early 6  Gyr. After that time, the disc stars in this asymmetrical structure have become kinematically hotter, and are thus not sensitive to perturbations, and we find the structure is a relatively younger population. With quantitative analysis, we find stars both above and below the plane at R ≳ 9 kpc that exhibit bending mode motions of which the sensitive duration is around 8  Gyr. We speculate that the in-plane asymmetries might not be mainly caused by a fast rotating bar, intrinsically elliptical outer disc, secular expansion of the disc, or streams. Spiral arm dynamics, out-of-equilibrium models, minor mergers or others are important contributors. Vertical motions might be dominated by bending and breathing modes induced by complicated inner or external perturbers. It is likely that many of these mechanisms are coupled together. 
    more » « less
  3. Whereas the gill chambers of jawless vertebrates open directly into the environment, jawed vertebrates evolved skeletal appendages that drive oxygenated water unidirectionally over the gills. A major anatomical difference between the two jawed vertebrate lineages is the presence of a single large gill cover in bony fishes versus separate covers for each gill chamber in cartilaginous fishes. Here, we find that these divergent patterns correlate with the pharyngeal arch expression of Pou3f3 orthologs. We identify a deeply conserved Pou3f3 arch enhancer present in humans through sharks but undetectable in jawless fish. Minor differences between the bony and cartilaginous fish enhancers account for their restricted versus pan-arch expression patterns. In zebrafish, mutation of Pou3f3 or the conserved enhancer disrupts gill cover formation, whereas ectopic pan-arch Pou3f3b expression generates ectopic skeletal elements resembling the multimeric covers of cartilaginous fishes. Emergence of this Pou3f3 arch enhancer >430 Mya and subsequent modifications may thus have contributed to the acquisition and diversification of gill covers and respiratory strategies during gnathostome evolution. 
    more » « less
  4. Abstract Life history theory suggests that maximum size and growth evolve to maximize fitness. In contrast, the Gill Oxygen Limitation Theory (GOLT) suggests that growth and maximum size in fishes and other aquatic, water‐breathing organisms is constrained by the body mass‐scaling of gill surface area. Here, we use new data and a novel phylogenetic Bayesian multilevel modelling framework to test this idea by asking the three questions posed by the GOLT regarding maximum size, growth and gills. Across fishes, we ask whether the body mass‐scaling of gill surface area explains (1) variation in the von Bertalanffy growth coefficient (k) above and beyond that explained by asymptomatic size (W), (2) variation in growth performance (a trait that integrates the tradeoff betweenkandW) and (3) more variation in growth performance compared to activity (as approximated by caudal fin aspect ratio). Overall, we find that there is only a weak relationship among maximum size, growth and gill surface area across species. Indeed, the body mass‐scaling of gill surface area does not explain much variation ink(especially for those species that reach the sameW) or growth performance. Activity explained three to five times more variation in growth performance compared to gill surface area. Our results suggest that in fishes, gill surface area is not the only factor that explains variation in maximum size and growth, and that other covariates (e.g. activity) are likely important in understanding how growth, maximum size and other life history traits vary across species. 
    more » « less
  5. Abstract We study stress, pressure, and rock properties in evolving accretionary wedges using analytical formulations and geomechanical models. The evolution of the stress state from that imposed by uniaxial burial seaward of the trench to Coulomb failure within the wedge generates overpressure and drives compaction above the décollement. Changes in both mean and shear stress generate overpressure and shear‐induced pressures play a particularly important role in the trench area. In the transition zone between uniaxial burial and Coulomb failure, shear‐induced overpressures increase more than overburden and are higher than footwall pressures. This rapid increase in overpressure reduces the effective normal stress and weakens the plate interface along a zone that onsets ahead of the trench and persists well into the subduction zone. It also drives dewatering at the trench, which enables compaction of the hanging‐wall sediments and a porosity offset at the décollement. Within the accretionary wedge, sediments are at Coulomb failure and the pore pressure response is proportional to changes in mean stress. Low permeability and high convergence rates promote overpressure generation in the wedge, which limits sediment strength. Our results may provide a hydromechanical explanation for a wide range of observed behaviors, including the development of protothrust zones, widespread occurrence of shallow slow earthquake phenomena, and the propagation of large shallow coseismic slip. 
    more » « less